| /* Extended regular expression matching and search library. |
| Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #if defined __TANDEM |
| /* This is currently duplicated from git-compat-utils.h */ |
| # ifdef NO_INTPTR_T |
| typedef long intptr_t; |
| typedef unsigned long uintptr_t; |
| # endif |
| #endif |
| |
| static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, |
| size_t length, reg_syntax_t syntax); |
| static void re_compile_fastmap_iter (regex_t *bufp, |
| const re_dfastate_t *init_state, |
| char *fastmap); |
| static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); |
| #ifdef RE_ENABLE_I18N |
| static void free_charset (re_charset_t *cset); |
| #endif /* RE_ENABLE_I18N */ |
| static void free_workarea_compile (regex_t *preg); |
| static reg_errcode_t create_initial_state (re_dfa_t *dfa); |
| #ifdef RE_ENABLE_I18N |
| static void optimize_utf8 (re_dfa_t *dfa); |
| #endif |
| static reg_errcode_t analyze (regex_t *preg); |
| static reg_errcode_t preorder (bin_tree_t *root, |
| reg_errcode_t (fn (void *, bin_tree_t *)), |
| void *extra); |
| static reg_errcode_t postorder (bin_tree_t *root, |
| reg_errcode_t (fn (void *, bin_tree_t *)), |
| void *extra); |
| static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); |
| static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); |
| static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, |
| bin_tree_t *node); |
| static reg_errcode_t calc_first (void *extra, bin_tree_t *node); |
| static reg_errcode_t calc_next (void *extra, bin_tree_t *node); |
| static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); |
| static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); |
| static int search_duplicated_node (const re_dfa_t *dfa, int org_node, |
| unsigned int constraint); |
| static reg_errcode_t calc_eclosure (re_dfa_t *dfa); |
| static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, |
| int node, int root); |
| static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); |
| static int fetch_number (re_string_t *input, re_token_t *token, |
| reg_syntax_t syntax); |
| static int peek_token (re_token_t *token, re_string_t *input, |
| reg_syntax_t syntax) internal_function; |
| static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, |
| reg_syntax_t syntax, reg_errcode_t *err); |
| static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, |
| re_token_t *token, reg_syntax_t syntax, |
| int nest, reg_errcode_t *err); |
| static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, |
| re_token_t *token, reg_syntax_t syntax, |
| int nest, reg_errcode_t *err); |
| static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, |
| re_token_t *token, reg_syntax_t syntax, |
| int nest, reg_errcode_t *err); |
| static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, |
| re_token_t *token, reg_syntax_t syntax, |
| int nest, reg_errcode_t *err); |
| static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, |
| re_dfa_t *dfa, re_token_t *token, |
| reg_syntax_t syntax, reg_errcode_t *err); |
| static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, |
| re_token_t *token, reg_syntax_t syntax, |
| reg_errcode_t *err); |
| static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, |
| re_string_t *regexp, |
| re_token_t *token, int token_len, |
| re_dfa_t *dfa, |
| reg_syntax_t syntax, |
| int accept_hyphen); |
| static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, |
| re_string_t *regexp, |
| re_token_t *token); |
| #ifdef RE_ENABLE_I18N |
| static reg_errcode_t build_equiv_class (bitset_t sbcset, |
| re_charset_t *mbcset, |
| int *equiv_class_alloc, |
| const unsigned char *name); |
| static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
| bitset_t sbcset, |
| re_charset_t *mbcset, |
| int *char_class_alloc, |
| const char *class_name, |
| reg_syntax_t syntax); |
| #else /* not RE_ENABLE_I18N */ |
| static reg_errcode_t build_equiv_class (bitset_t sbcset, |
| const unsigned char *name); |
| static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, |
| bitset_t sbcset, |
| const char *class_name, |
| reg_syntax_t syntax); |
| #endif /* not RE_ENABLE_I18N */ |
| static bin_tree_t *build_charclass_op (re_dfa_t *dfa, |
| RE_TRANSLATE_TYPE trans, |
| const char *class_name, |
| const char *extra, |
| int non_match, reg_errcode_t *err); |
| static bin_tree_t *create_tree (re_dfa_t *dfa, |
| bin_tree_t *left, bin_tree_t *right, |
| re_token_type_t type); |
| static bin_tree_t *create_token_tree (re_dfa_t *dfa, |
| bin_tree_t *left, bin_tree_t *right, |
| const re_token_t *token); |
| static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); |
| static void free_token (re_token_t *node); |
| static reg_errcode_t free_tree (void *extra, bin_tree_t *node); |
| static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); |
| |
| /* This table gives an error message for each of the error codes listed |
| in regex.h. Obviously the order here has to be same as there. |
| POSIX doesn't require that we do anything for REG_NOERROR, |
| but why not be nice? */ |
| |
| const char __re_error_msgid[] attribute_hidden = |
| { |
| #define REG_NOERROR_IDX 0 |
| gettext_noop ("Success") /* REG_NOERROR */ |
| "\0" |
| #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") |
| gettext_noop ("No match") /* REG_NOMATCH */ |
| "\0" |
| #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") |
| gettext_noop ("Invalid regular expression") /* REG_BADPAT */ |
| "\0" |
| #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") |
| gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ |
| "\0" |
| #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") |
| gettext_noop ("Invalid character class name") /* REG_ECTYPE */ |
| "\0" |
| #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") |
| gettext_noop ("Trailing backslash") /* REG_EESCAPE */ |
| "\0" |
| #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") |
| gettext_noop ("Invalid back reference") /* REG_ESUBREG */ |
| "\0" |
| #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") |
| gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ |
| "\0" |
| #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") |
| gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ |
| "\0" |
| #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") |
| gettext_noop ("Unmatched \\{") /* REG_EBRACE */ |
| "\0" |
| #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") |
| gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ |
| "\0" |
| #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") |
| gettext_noop ("Invalid range end") /* REG_ERANGE */ |
| "\0" |
| #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") |
| gettext_noop ("Memory exhausted") /* REG_ESPACE */ |
| "\0" |
| #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") |
| gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ |
| "\0" |
| #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") |
| gettext_noop ("Premature end of regular expression") /* REG_EEND */ |
| "\0" |
| #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") |
| gettext_noop ("Regular expression too big") /* REG_ESIZE */ |
| "\0" |
| #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") |
| gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ |
| }; |
| |
| const size_t __re_error_msgid_idx[] attribute_hidden = |
| { |
| REG_NOERROR_IDX, |
| REG_NOMATCH_IDX, |
| REG_BADPAT_IDX, |
| REG_ECOLLATE_IDX, |
| REG_ECTYPE_IDX, |
| REG_EESCAPE_IDX, |
| REG_ESUBREG_IDX, |
| REG_EBRACK_IDX, |
| REG_EPAREN_IDX, |
| REG_EBRACE_IDX, |
| REG_BADBR_IDX, |
| REG_ERANGE_IDX, |
| REG_ESPACE_IDX, |
| REG_BADRPT_IDX, |
| REG_EEND_IDX, |
| REG_ESIZE_IDX, |
| REG_ERPAREN_IDX |
| }; |
| |
| /* Entry points for GNU code. */ |
| |
| |
| #ifdef ZOS_USS |
| |
| /* For ZOS USS we must define btowc */ |
| |
| wchar_t |
| btowc (int c) |
| { |
| wchar_t wtmp[2]; |
| char tmp[2]; |
| |
| tmp[0] = c; |
| tmp[1] = 0; |
| |
| mbtowc (wtmp, tmp, 1); |
| return wtmp[0]; |
| } |
| #endif |
| |
| /* re_compile_pattern is the GNU regular expression compiler: it |
| compiles PATTERN (of length LENGTH) and puts the result in BUFP. |
| Returns 0 if the pattern was valid, otherwise an error string. |
| |
| Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
| are set in BUFP on entry. */ |
| |
| const char * |
| re_compile_pattern (const char *pattern, |
| size_t length, |
| struct re_pattern_buffer *bufp) |
| { |
| reg_errcode_t ret; |
| |
| /* And GNU code determines whether or not to get register information |
| by passing null for the REGS argument to re_match, etc., not by |
| setting no_sub, unless RE_NO_SUB is set. */ |
| bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); |
| |
| /* Match anchors at newline. */ |
| bufp->newline_anchor = 1; |
| |
| ret = re_compile_internal (bufp, pattern, length, re_syntax_options); |
| |
| if (!ret) |
| return NULL; |
| return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_compile_pattern, re_compile_pattern) |
| #endif |
| |
| /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
| also be assigned to arbitrarily: each pattern buffer stores its own |
| syntax, so it can be changed between regex compilations. */ |
| /* This has no initializer because initialized variables in Emacs |
| become read-only after dumping. */ |
| reg_syntax_t re_syntax_options; |
| |
| |
| /* Specify the precise syntax of regexps for compilation. This provides |
| for compatibility for various utilities which historically have |
| different, incompatible syntaxes. |
| |
| The argument SYNTAX is a bit mask comprised of the various bits |
| defined in regex.h. We return the old syntax. */ |
| |
| reg_syntax_t |
| re_set_syntax (reg_syntax_t syntax) |
| { |
| reg_syntax_t ret = re_syntax_options; |
| |
| re_syntax_options = syntax; |
| return ret; |
| } |
| #ifdef _LIBC |
| weak_alias (__re_set_syntax, re_set_syntax) |
| #endif |
| |
| int |
| re_compile_fastmap (struct re_pattern_buffer *bufp) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
| char *fastmap = bufp->fastmap; |
| |
| memset (fastmap, '\0', sizeof (char) * SBC_MAX); |
| re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); |
| if (dfa->init_state != dfa->init_state_word) |
| re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); |
| if (dfa->init_state != dfa->init_state_nl) |
| re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); |
| if (dfa->init_state != dfa->init_state_begbuf) |
| re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); |
| bufp->fastmap_accurate = 1; |
| return 0; |
| } |
| #ifdef _LIBC |
| weak_alias (__re_compile_fastmap, re_compile_fastmap) |
| #endif |
| |
| static inline void |
| __attribute ((always_inline)) |
| re_set_fastmap (char *fastmap, int icase, int ch) |
| { |
| fastmap[ch] = 1; |
| if (icase) |
| fastmap[tolower (ch)] = 1; |
| } |
| |
| /* Helper function for re_compile_fastmap. |
| Compile fastmap for the initial_state INIT_STATE. */ |
| |
| static void |
| re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, |
| char *fastmap) |
| { |
| volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; |
| int node_cnt; |
| int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); |
| for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) |
| { |
| int node = init_state->nodes.elems[node_cnt]; |
| re_token_type_t type = dfa->nodes[node].type; |
| |
| if (type == CHARACTER) |
| { |
| re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); |
| #ifdef RE_ENABLE_I18N |
| if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
| { |
| unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; |
| wchar_t wc; |
| mbstate_t state; |
| |
| p = buf; |
| *p++ = dfa->nodes[node].opr.c; |
| while (++node < dfa->nodes_len |
| && dfa->nodes[node].type == CHARACTER |
| && dfa->nodes[node].mb_partial) |
| *p++ = dfa->nodes[node].opr.c; |
| memset (&state, '\0', sizeof (state)); |
| if (__mbrtowc (&wc, (const char *) buf, p - buf, |
| &state) == p - buf |
| && (__wcrtomb ((char *) buf, towlower (wc), &state) |
| != (size_t) -1)) |
| re_set_fastmap (fastmap, 0, buf[0]); |
| re_free (buf); |
| } |
| #endif |
| } |
| else if (type == SIMPLE_BRACKET) |
| { |
| int i, ch; |
| for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| { |
| int j; |
| bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; |
| for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| if (w & ((bitset_word_t) 1 << j)) |
| re_set_fastmap (fastmap, icase, ch); |
| } |
| } |
| #ifdef RE_ENABLE_I18N |
| else if (type == COMPLEX_BRACKET) |
| { |
| re_charset_t *cset = dfa->nodes[node].opr.mbcset; |
| int i; |
| |
| # ifdef _LIBC |
| /* See if we have to try all bytes which start multiple collation |
| elements. |
| e.g. In da_DK, we want to catch 'a' since "aa" is a valid |
| collation element, and don't catch 'b' since 'b' is |
| the only collation element which starts from 'b' (and |
| it is caught by SIMPLE_BRACKET). */ |
| if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 |
| && (cset->ncoll_syms || cset->nranges)) |
| { |
| const int32_t *table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| for (i = 0; i < SBC_MAX; ++i) |
| if (table[i] < 0) |
| re_set_fastmap (fastmap, icase, i); |
| } |
| # endif /* _LIBC */ |
| |
| /* See if we have to start the match at all multibyte characters, |
| i.e. where we would not find an invalid sequence. This only |
| applies to multibyte character sets; for single byte character |
| sets, the SIMPLE_BRACKET again suffices. */ |
| if (dfa->mb_cur_max > 1 |
| && (cset->nchar_classes || cset->non_match || cset->nranges |
| # ifdef _LIBC |
| || cset->nequiv_classes |
| # endif /* _LIBC */ |
| )) |
| { |
| unsigned char c = 0; |
| do |
| { |
| mbstate_t mbs; |
| memset (&mbs, 0, sizeof (mbs)); |
| if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) |
| re_set_fastmap (fastmap, false, (int) c); |
| } |
| while (++c != 0); |
| } |
| |
| else |
| { |
| /* ... Else catch all bytes which can start the mbchars. */ |
| for (i = 0; i < cset->nmbchars; ++i) |
| { |
| char buf[256]; |
| mbstate_t state; |
| memset (&state, '\0', sizeof (state)); |
| if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) |
| re_set_fastmap (fastmap, icase, *(unsigned char *) buf); |
| if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) |
| { |
| if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) |
| != (size_t) -1) |
| re_set_fastmap (fastmap, false, *(unsigned char *) buf); |
| } |
| } |
| } |
| } |
| #endif /* RE_ENABLE_I18N */ |
| else if (type == OP_PERIOD |
| #ifdef RE_ENABLE_I18N |
| || type == OP_UTF8_PERIOD |
| #endif /* RE_ENABLE_I18N */ |
| || type == END_OF_RE) |
| { |
| memset (fastmap, '\1', sizeof (char) * SBC_MAX); |
| if (type == END_OF_RE) |
| bufp->can_be_null = 1; |
| return; |
| } |
| } |
| } |
| |
| /* Entry point for POSIX code. */ |
| /* regcomp takes a regular expression as a string and compiles it. |
| |
| PREG is a regex_t *. We do not expect any fields to be initialized, |
| since POSIX says we shouldn't. Thus, we set |
| |
| `buffer' to the compiled pattern; |
| `used' to the length of the compiled pattern; |
| `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
| REG_EXTENDED bit in CFLAGS is set; otherwise, to |
| RE_SYNTAX_POSIX_BASIC; |
| `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
| `fastmap' to an allocated space for the fastmap; |
| `fastmap_accurate' to zero; |
| `re_nsub' to the number of subexpressions in PATTERN. |
| |
| PATTERN is the address of the pattern string. |
| |
| CFLAGS is a series of bits which affect compilation. |
| |
| If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
| use POSIX basic syntax. |
| |
| If REG_NEWLINE is set, then . and [^...] don't match newline. |
| Also, regexec will try a match beginning after every newline. |
| |
| If REG_ICASE is set, then we considers upper- and lowercase |
| versions of letters to be equivalent when matching. |
| |
| If REG_NOSUB is set, then when PREG is passed to regexec, that |
| routine will report only success or failure, and nothing about the |
| registers. |
| |
| It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
| the return codes and their meanings.) */ |
| |
| int |
| regcomp (regex_t *__restrict preg, |
| const char *__restrict pattern, |
| int cflags) |
| { |
| reg_errcode_t ret; |
| reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED |
| : RE_SYNTAX_POSIX_BASIC); |
| |
| preg->buffer = NULL; |
| preg->allocated = 0; |
| preg->used = 0; |
| |
| /* Try to allocate space for the fastmap. */ |
| preg->fastmap = re_malloc (char, SBC_MAX); |
| if (BE (preg->fastmap == NULL, 0)) |
| return REG_ESPACE; |
| |
| syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; |
| |
| /* If REG_NEWLINE is set, newlines are treated differently. */ |
| if (cflags & REG_NEWLINE) |
| { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
| syntax &= ~RE_DOT_NEWLINE; |
| syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
| /* It also changes the matching behavior. */ |
| preg->newline_anchor = 1; |
| } |
| else |
| preg->newline_anchor = 0; |
| preg->no_sub = !!(cflags & REG_NOSUB); |
| preg->translate = NULL; |
| |
| ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); |
| |
| /* POSIX doesn't distinguish between an unmatched open-group and an |
| unmatched close-group: both are REG_EPAREN. */ |
| if (ret == REG_ERPAREN) |
| ret = REG_EPAREN; |
| |
| /* We have already checked preg->fastmap != NULL. */ |
| if (BE (ret == REG_NOERROR, 1)) |
| /* Compute the fastmap now, since regexec cannot modify the pattern |
| buffer. This function never fails in this implementation. */ |
| (void) re_compile_fastmap (preg); |
| else |
| { |
| /* Some error occurred while compiling the expression. */ |
| re_free (preg->fastmap); |
| preg->fastmap = NULL; |
| } |
| |
| return (int) ret; |
| } |
| #ifdef _LIBC |
| weak_alias (__regcomp, regcomp) |
| #endif |
| |
| /* Returns a message corresponding to an error code, ERRCODE, returned |
| from either regcomp or regexec. We don't use PREG here. */ |
| |
| size_t |
| regerror(int errcode, const regex_t *__restrict preg, |
| char *__restrict errbuf, size_t errbuf_size) |
| { |
| const char *msg; |
| size_t msg_size; |
| |
| if (BE (errcode < 0 |
| || errcode >= (int) (sizeof (__re_error_msgid_idx) |
| / sizeof (__re_error_msgid_idx[0])), 0)) |
| /* Only error codes returned by the rest of the code should be passed |
| to this routine. If we are given anything else, or if other regex |
| code generates an invalid error code, then the program has a bug. |
| Dump core so we can fix it. */ |
| abort (); |
| |
| msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); |
| |
| msg_size = strlen (msg) + 1; /* Includes the null. */ |
| |
| if (BE (errbuf_size != 0, 1)) |
| { |
| if (BE (msg_size > errbuf_size, 0)) |
| { |
| memcpy (errbuf, msg, errbuf_size - 1); |
| errbuf[errbuf_size - 1] = 0; |
| } |
| else |
| memcpy (errbuf, msg, msg_size); |
| } |
| |
| return msg_size; |
| } |
| #ifdef _LIBC |
| weak_alias (__regerror, regerror) |
| #endif |
| |
| |
| #ifdef RE_ENABLE_I18N |
| /* This static array is used for the map to single-byte characters when |
| UTF-8 is used. Otherwise we would allocate memory just to initialize |
| it the same all the time. UTF-8 is the preferred encoding so this is |
| a worthwhile optimization. */ |
| #if __GNUC__ >= 3 |
| static const bitset_t utf8_sb_map = { |
| /* Set the first 128 bits. */ |
| [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX |
| }; |
| #else /* ! (__GNUC__ >= 3) */ |
| static bitset_t utf8_sb_map; |
| #endif /* __GNUC__ >= 3 */ |
| #endif /* RE_ENABLE_I18N */ |
| |
| |
| static void |
| free_dfa_content (re_dfa_t *dfa) |
| { |
| int i, j; |
| |
| if (dfa->nodes) |
| for (i = 0; i < dfa->nodes_len; ++i) |
| free_token (dfa->nodes + i); |
| re_free (dfa->nexts); |
| for (i = 0; i < dfa->nodes_len; ++i) |
| { |
| if (dfa->eclosures != NULL) |
| re_node_set_free (dfa->eclosures + i); |
| if (dfa->inveclosures != NULL) |
| re_node_set_free (dfa->inveclosures + i); |
| if (dfa->edests != NULL) |
| re_node_set_free (dfa->edests + i); |
| } |
| re_free (dfa->edests); |
| re_free (dfa->eclosures); |
| re_free (dfa->inveclosures); |
| re_free (dfa->nodes); |
| |
| if (dfa->state_table) |
| for (i = 0; i <= dfa->state_hash_mask; ++i) |
| { |
| struct re_state_table_entry *entry = dfa->state_table + i; |
| for (j = 0; j < entry->num; ++j) |
| { |
| re_dfastate_t *state = entry->array[j]; |
| free_state (state); |
| } |
| re_free (entry->array); |
| } |
| re_free (dfa->state_table); |
| #ifdef RE_ENABLE_I18N |
| if (dfa->sb_char != utf8_sb_map) |
| re_free (dfa->sb_char); |
| #endif |
| re_free (dfa->subexp_map); |
| #ifdef DEBUG |
| re_free (dfa->re_str); |
| #endif |
| |
| re_free (dfa); |
| } |
| |
| |
| /* Free dynamically allocated space used by PREG. */ |
| |
| void |
| regfree (regex_t *preg) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| if (BE (dfa != NULL, 1)) |
| free_dfa_content (dfa); |
| preg->buffer = NULL; |
| preg->allocated = 0; |
| |
| re_free (preg->fastmap); |
| preg->fastmap = NULL; |
| |
| re_free (preg->translate); |
| preg->translate = NULL; |
| } |
| #ifdef _LIBC |
| weak_alias (__regfree, regfree) |
| #endif |
| |
| /* Entry points compatible with 4.2 BSD regex library. We don't define |
| them unless specifically requested. */ |
| |
| #if defined _REGEX_RE_COMP || defined _LIBC |
| |
| /* BSD has one and only one pattern buffer. */ |
| static struct re_pattern_buffer re_comp_buf; |
| |
| char * |
| # ifdef _LIBC |
| /* Make these definitions weak in libc, so POSIX programs can redefine |
| these names if they don't use our functions, and still use |
| regcomp/regexec above without link errors. */ |
| weak_function |
| # endif |
| re_comp (s) |
| const char *s; |
| { |
| reg_errcode_t ret; |
| char *fastmap; |
| |
| if (!s) |
| { |
| if (!re_comp_buf.buffer) |
| return gettext ("No previous regular expression"); |
| return 0; |
| } |
| |
| if (re_comp_buf.buffer) |
| { |
| fastmap = re_comp_buf.fastmap; |
| re_comp_buf.fastmap = NULL; |
| __regfree (&re_comp_buf); |
| memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); |
| re_comp_buf.fastmap = fastmap; |
| } |
| |
| if (re_comp_buf.fastmap == NULL) |
| { |
| re_comp_buf.fastmap = (char *) malloc (SBC_MAX); |
| if (re_comp_buf.fastmap == NULL) |
| return (char *) gettext (__re_error_msgid |
| + __re_error_msgid_idx[(int) REG_ESPACE]); |
| } |
| |
| /* Since `re_exec' always passes NULL for the `regs' argument, we |
| don't need to initialize the pattern buffer fields which affect it. */ |
| |
| /* Match anchors at newlines. */ |
| re_comp_buf.newline_anchor = 1; |
| |
| ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); |
| |
| if (!ret) |
| return NULL; |
| |
| /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
| return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); |
| } |
| |
| #ifdef _LIBC |
| libc_freeres_fn (free_mem) |
| { |
| __regfree (&re_comp_buf); |
| } |
| #endif |
| |
| #endif /* _REGEX_RE_COMP */ |
| |
| /* Internal entry point. |
| Compile the regular expression PATTERN, whose length is LENGTH. |
| SYNTAX indicate regular expression's syntax. */ |
| |
| static reg_errcode_t |
| re_compile_internal (regex_t *preg, const char * pattern, size_t length, |
| reg_syntax_t syntax) |
| { |
| reg_errcode_t err = REG_NOERROR; |
| re_dfa_t *dfa; |
| re_string_t regexp; |
| |
| /* Initialize the pattern buffer. */ |
| preg->fastmap_accurate = 0; |
| preg->syntax = syntax; |
| preg->not_bol = preg->not_eol = 0; |
| preg->used = 0; |
| preg->re_nsub = 0; |
| preg->can_be_null = 0; |
| preg->regs_allocated = REGS_UNALLOCATED; |
| |
| /* Initialize the dfa. */ |
| dfa = (re_dfa_t *) preg->buffer; |
| if (BE (preg->allocated < sizeof (re_dfa_t), 0)) |
| { |
| /* If zero allocated, but buffer is non-null, try to realloc |
| enough space. This loses if buffer's address is bogus, but |
| that is the user's responsibility. If ->buffer is NULL this |
| is a simple allocation. */ |
| dfa = re_realloc (preg->buffer, re_dfa_t, 1); |
| if (dfa == NULL) |
| return REG_ESPACE; |
| preg->allocated = sizeof (re_dfa_t); |
| preg->buffer = (unsigned char *) dfa; |
| } |
| preg->used = sizeof (re_dfa_t); |
| |
| err = init_dfa (dfa, length); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| free_dfa_content (dfa); |
| preg->buffer = NULL; |
| preg->allocated = 0; |
| return err; |
| } |
| #ifdef DEBUG |
| /* Note: length+1 will not overflow since it is checked in init_dfa. */ |
| dfa->re_str = re_malloc (char, length + 1); |
| strncpy (dfa->re_str, pattern, length + 1); |
| #endif |
| |
| __libc_lock_init (dfa->lock); |
| |
| err = re_string_construct (®exp, pattern, length, preg->translate, |
| syntax & RE_ICASE, dfa); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_compile_internal_free_return: |
| free_workarea_compile (preg); |
| re_string_destruct (®exp); |
| free_dfa_content (dfa); |
| preg->buffer = NULL; |
| preg->allocated = 0; |
| return err; |
| } |
| |
| /* Parse the regular expression, and build a structure tree. */ |
| preg->re_nsub = 0; |
| dfa->str_tree = parse (®exp, preg, syntax, &err); |
| if (BE (dfa->str_tree == NULL, 0)) |
| goto re_compile_internal_free_return; |
| |
| /* Analyze the tree and create the nfa. */ |
| err = analyze (preg); |
| if (BE (err != REG_NOERROR, 0)) |
| goto re_compile_internal_free_return; |
| |
| #ifdef RE_ENABLE_I18N |
| /* If possible, do searching in single byte encoding to speed things up. */ |
| if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) |
| optimize_utf8 (dfa); |
| #endif |
| |
| /* Then create the initial state of the dfa. */ |
| err = create_initial_state (dfa); |
| |
| /* Release work areas. */ |
| free_workarea_compile (preg); |
| re_string_destruct (®exp); |
| |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| free_dfa_content (dfa); |
| preg->buffer = NULL; |
| preg->allocated = 0; |
| } |
| |
| return err; |
| } |
| |
| /* Initialize DFA. We use the length of the regular expression PAT_LEN |
| as the initial length of some arrays. */ |
| |
| static reg_errcode_t |
| init_dfa (re_dfa_t *dfa, size_t pat_len) |
| { |
| unsigned int table_size; |
| #ifndef _LIBC |
| char *codeset_name; |
| #endif |
| |
| memset (dfa, '\0', sizeof (re_dfa_t)); |
| |
| /* Force allocation of str_tree_storage the first time. */ |
| dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
| |
| /* Avoid overflows. */ |
| if (pat_len == SIZE_MAX) |
| return REG_ESPACE; |
| |
| dfa->nodes_alloc = pat_len + 1; |
| dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); |
| |
| /* table_size = 2 ^ ceil(log pat_len) */ |
| for (table_size = 1; ; table_size <<= 1) |
| if (table_size > pat_len) |
| break; |
| |
| dfa->state_table = calloc (table_size, sizeof (struct re_state_table_entry)); |
| dfa->state_hash_mask = table_size - 1; |
| |
| dfa->mb_cur_max = MB_CUR_MAX; |
| #ifdef _LIBC |
| if (dfa->mb_cur_max == 6 |
| && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) |
| dfa->is_utf8 = 1; |
| dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) |
| != 0); |
| #else |
| # ifdef HAVE_LANGINFO_CODESET |
| codeset_name = nl_langinfo (CODESET); |
| # else |
| codeset_name = getenv ("LC_ALL"); |
| if (codeset_name == NULL || codeset_name[0] == '\0') |
| codeset_name = getenv ("LC_CTYPE"); |
| if (codeset_name == NULL || codeset_name[0] == '\0') |
| codeset_name = getenv ("LANG"); |
| if (codeset_name == NULL) |
| codeset_name = ""; |
| else if (strchr (codeset_name, '.') != NULL) |
| codeset_name = strchr (codeset_name, '.') + 1; |
| # endif |
| |
| /* strcasecmp isn't a standard interface. brute force check */ |
| #if 0 |
| if (strcasecmp (codeset_name, "UTF-8") == 0 |
| || strcasecmp (codeset_name, "UTF8") == 0) |
| dfa->is_utf8 = 1; |
| #else |
| if ( (codeset_name[0] == 'U' || codeset_name[0] == 'u') |
| && (codeset_name[1] == 'T' || codeset_name[1] == 't') |
| && (codeset_name[2] == 'F' || codeset_name[2] == 'f') |
| && (codeset_name[3] == '-' |
| ? codeset_name[4] == '8' && codeset_name[5] == '\0' |
| : codeset_name[3] == '8' && codeset_name[4] == '\0')) |
| dfa->is_utf8 = 1; |
| #endif |
| |
| /* We check exhaustively in the loop below if this charset is a |
| superset of ASCII. */ |
| dfa->map_notascii = 0; |
| #endif |
| |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| { |
| if (dfa->is_utf8) |
| { |
| #if !defined(__GNUC__) || __GNUC__ < 3 |
| static short utf8_sb_map_inited = 0; |
| |
| if (! utf8_sb_map_inited) |
| { |
| int i; |
| |
| utf8_sb_map_inited = 0; |
| for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) |
| utf8_sb_map[i] = BITSET_WORD_MAX; |
| } |
| #endif |
| dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; |
| } |
| else |
| { |
| int i, j, ch; |
| |
| dfa->sb_char = (re_bitset_ptr_t) calloc (1, sizeof (bitset_t)); |
| if (BE (dfa->sb_char == NULL, 0)) |
| return REG_ESPACE; |
| |
| /* Set the bits corresponding to single byte chars. */ |
| for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| { |
| wint_t wch = __btowc (ch); |
| if (wch != WEOF) |
| dfa->sb_char[i] |= (bitset_word_t) 1 << j; |
| # ifndef _LIBC |
| if (isascii (ch) && wch != ch) |
| dfa->map_notascii = 1; |
| # endif |
| } |
| } |
| } |
| #endif |
| |
| if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) |
| return REG_ESPACE; |
| return REG_NOERROR; |
| } |
| |
| /* Initialize WORD_CHAR table, which indicate which character is |
| "word". In this case "word" means that it is the word construction |
| character used by some operators like "\<", "\>", etc. */ |
| |
| static void |
| internal_function |
| init_word_char (re_dfa_t *dfa) |
| { |
| int i, j, ch; |
| dfa->word_ops_used = 1; |
| for (i = 0, ch = 0; i < BITSET_WORDS; ++i) |
| for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) |
| if (isalnum (ch) || ch == '_') |
| dfa->word_char[i] |= (bitset_word_t) 1 << j; |
| } |
| |
| /* Free the work area which are only used while compiling. */ |
| |
| static void |
| free_workarea_compile (regex_t *preg) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_storage_t *storage, *next; |
| for (storage = dfa->str_tree_storage; storage; storage = next) |
| { |
| next = storage->next; |
| re_free (storage); |
| } |
| dfa->str_tree_storage = NULL; |
| dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; |
| dfa->str_tree = NULL; |
| re_free (dfa->org_indices); |
| dfa->org_indices = NULL; |
| } |
| |
| /* Create initial states for all contexts. */ |
| |
| static reg_errcode_t |
| create_initial_state (re_dfa_t *dfa) |
| { |
| int first, i; |
| reg_errcode_t err; |
| re_node_set init_nodes; |
| |
| /* Initial states have the epsilon closure of the node which is |
| the first node of the regular expression. */ |
| first = dfa->str_tree->first->node_idx; |
| dfa->init_node = first; |
| err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| /* The back-references which are in initial states can epsilon transit, |
| since in this case all of the subexpressions can be null. |
| Then we add epsilon closures of the nodes which are the next nodes of |
| the back-references. */ |
| if (dfa->nbackref > 0) |
| for (i = 0; i < init_nodes.nelem; ++i) |
| { |
| int node_idx = init_nodes.elems[i]; |
| re_token_type_t type = dfa->nodes[node_idx].type; |
| |
| int clexp_idx; |
| if (type != OP_BACK_REF) |
| continue; |
| for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) |
| { |
| re_token_t *clexp_node; |
| clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; |
| if (clexp_node->type == OP_CLOSE_SUBEXP |
| && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) |
| break; |
| } |
| if (clexp_idx == init_nodes.nelem) |
| continue; |
| |
| if (type == OP_BACK_REF) |
| { |
| int dest_idx = dfa->edests[node_idx].elems[0]; |
| if (!re_node_set_contains (&init_nodes, dest_idx)) |
| { |
| reg_errcode_t err = re_node_set_merge (&init_nodes, |
| dfa->eclosures |
| + dest_idx); |
| if (err != REG_NOERROR) |
| return err; |
| i = 0; |
| } |
| } |
| } |
| |
| /* It must be the first time to invoke acquire_state. */ |
| dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); |
| /* We don't check ERR here, since the initial state must not be NULL. */ |
| if (BE (dfa->init_state == NULL, 0)) |
| return err; |
| if (dfa->init_state->has_constraint) |
| { |
| dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, |
| CONTEXT_WORD); |
| dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, |
| CONTEXT_NEWLINE); |
| dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, |
| &init_nodes, |
| CONTEXT_NEWLINE |
| | CONTEXT_BEGBUF); |
| if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
| || dfa->init_state_begbuf == NULL, 0)) |
| return err; |
| } |
| else |
| dfa->init_state_word = dfa->init_state_nl |
| = dfa->init_state_begbuf = dfa->init_state; |
| |
| re_node_set_free (&init_nodes); |
| return REG_NOERROR; |
| } |
| |
| #ifdef RE_ENABLE_I18N |
| /* If it is possible to do searching in single byte encoding instead of UTF-8 |
| to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change |
| DFA nodes where needed. */ |
| |
| static void |
| optimize_utf8 (re_dfa_t *dfa) |
| { |
| int node, i, mb_chars = 0, has_period = 0; |
| |
| for (node = 0; node < dfa->nodes_len; ++node) |
| switch (dfa->nodes[node].type) |
| { |
| case CHARACTER: |
| if (dfa->nodes[node].opr.c >= 0x80) |
| mb_chars = 1; |
| break; |
| case ANCHOR: |
| switch (dfa->nodes[node].opr.ctx_type) |
| { |
| case LINE_FIRST: |
| case LINE_LAST: |
| case BUF_FIRST: |
| case BUF_LAST: |
| break; |
| default: |
| /* Word anchors etc. cannot be handled. It's okay to test |
| opr.ctx_type since constraints (for all DFA nodes) are |
| created by ORing one or more opr.ctx_type values. */ |
| return; |
| } |
| break; |
| case OP_PERIOD: |
| has_period = 1; |
| break; |
| case OP_BACK_REF: |
| case OP_ALT: |
| case END_OF_RE: |
| case OP_DUP_ASTERISK: |
| case OP_OPEN_SUBEXP: |
| case OP_CLOSE_SUBEXP: |
| break; |
| case COMPLEX_BRACKET: |
| return; |
| case SIMPLE_BRACKET: |
| /* Just double check. The non-ASCII range starts at 0x80. */ |
| assert (0x80 % BITSET_WORD_BITS == 0); |
| for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) |
| if (dfa->nodes[node].opr.sbcset[i]) |
| return; |
| break; |
| default: |
| abort (); |
| } |
| |
| if (mb_chars || has_period) |
| for (node = 0; node < dfa->nodes_len; ++node) |
| { |
| if (dfa->nodes[node].type == CHARACTER |
| && dfa->nodes[node].opr.c >= 0x80) |
| dfa->nodes[node].mb_partial = 0; |
| else if (dfa->nodes[node].type == OP_PERIOD) |
| dfa->nodes[node].type = OP_UTF8_PERIOD; |
| } |
| |
| /* The search can be in single byte locale. */ |
| dfa->mb_cur_max = 1; |
| dfa->is_utf8 = 0; |
| dfa->has_mb_node = dfa->nbackref > 0 || has_period; |
| } |
| #endif |
| |
| /* Analyze the structure tree, and calculate "first", "next", "edest", |
| "eclosure", and "inveclosure". */ |
| |
| static reg_errcode_t |
| analyze (regex_t *preg) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| reg_errcode_t ret; |
| |
| /* Allocate arrays. */ |
| dfa->nexts = re_malloc (int, dfa->nodes_alloc); |
| dfa->org_indices = re_malloc (int, dfa->nodes_alloc); |
| dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); |
| dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); |
| if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL |
| || dfa->eclosures == NULL, 0)) |
| return REG_ESPACE; |
| |
| dfa->subexp_map = re_malloc (int, preg->re_nsub); |
| if (dfa->subexp_map != NULL) |
| { |
| int i; |
| for (i = 0; i < preg->re_nsub; i++) |
| dfa->subexp_map[i] = i; |
| preorder (dfa->str_tree, optimize_subexps, dfa); |
| for (i = 0; i < preg->re_nsub; i++) |
| if (dfa->subexp_map[i] != i) |
| break; |
| if (i == preg->re_nsub) |
| { |
| free (dfa->subexp_map); |
| dfa->subexp_map = NULL; |
| } |
| } |
| |
| ret = postorder (dfa->str_tree, lower_subexps, preg); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| ret = postorder (dfa->str_tree, calc_first, dfa); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| preorder (dfa->str_tree, calc_next, dfa); |
| ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| ret = calc_eclosure (dfa); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| |
| /* We only need this during the prune_impossible_nodes pass in regexec.c; |
| skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ |
| if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) |
| || dfa->nbackref) |
| { |
| dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); |
| if (BE (dfa->inveclosures == NULL, 0)) |
| return REG_ESPACE; |
| ret = calc_inveclosure (dfa); |
| } |
| |
| return ret; |
| } |
| |
| /* Our parse trees are very unbalanced, so we cannot use a stack to |
| implement parse tree visits. Instead, we use parent pointers and |
| some hairy code in these two functions. */ |
| static reg_errcode_t |
| postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
| void *extra) |
| { |
| bin_tree_t *node, *prev; |
| |
| for (node = root; ; ) |
| { |
| /* Descend down the tree, preferably to the left (or to the right |
| if that's the only child). */ |
| while (node->left || node->right) |
| if (node->left) |
| node = node->left; |
| else |
| node = node->right; |
| |
| do |
| { |
| reg_errcode_t err = fn (extra, node); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| if (node->parent == NULL) |
| return REG_NOERROR; |
| prev = node; |
| node = node->parent; |
| } |
| /* Go up while we have a node that is reached from the right. */ |
| while (node->right == prev || node->right == NULL); |
| node = node->right; |
| } |
| } |
| |
| static reg_errcode_t |
| preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), |
| void *extra) |
| { |
| bin_tree_t *node; |
| |
| for (node = root; ; ) |
| { |
| reg_errcode_t err = fn (extra, node); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| /* Go to the left node, or up and to the right. */ |
| if (node->left) |
| node = node->left; |
| else |
| { |
| bin_tree_t *prev = NULL; |
| while (node->right == prev || node->right == NULL) |
| { |
| prev = node; |
| node = node->parent; |
| if (!node) |
| return REG_NOERROR; |
| } |
| node = node->right; |
| } |
| } |
| } |
| |
| /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell |
| re_search_internal to map the inner one's opr.idx to this one's. Adjust |
| backreferences as well. Requires a preorder visit. */ |
| static reg_errcode_t |
| optimize_subexps (void *extra, bin_tree_t *node) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) extra; |
| |
| if (node->token.type == OP_BACK_REF && dfa->subexp_map) |
| { |
| int idx = node->token.opr.idx; |
| node->token.opr.idx = dfa->subexp_map[idx]; |
| dfa->used_bkref_map |= 1 << node->token.opr.idx; |
| } |
| |
| else if (node->token.type == SUBEXP |
| && node->left && node->left->token.type == SUBEXP) |
| { |
| int other_idx = node->left->token.opr.idx; |
| |
| node->left = node->left->left; |
| if (node->left) |
| node->left->parent = node; |
| |
| dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; |
| if (other_idx < BITSET_WORD_BITS) |
| dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); |
| } |
| |
| return REG_NOERROR; |
| } |
| |
| /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation |
| of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ |
| static reg_errcode_t |
| lower_subexps (void *extra, bin_tree_t *node) |
| { |
| regex_t *preg = (regex_t *) extra; |
| reg_errcode_t err = REG_NOERROR; |
| |
| if (node->left && node->left->token.type == SUBEXP) |
| { |
| node->left = lower_subexp (&err, preg, node->left); |
| if (node->left) |
| node->left->parent = node; |
| } |
| if (node->right && node->right->token.type == SUBEXP) |
| { |
| node->right = lower_subexp (&err, preg, node->right); |
| if (node->right) |
| node->right->parent = node; |
| } |
| |
| return err; |
| } |
| |
| static bin_tree_t * |
| lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_t *body = node->left; |
| bin_tree_t *op, *cls, *tree1, *tree; |
| |
| if (preg->no_sub |
| /* We do not optimize empty subexpressions, because otherwise we may |
| have bad CONCAT nodes with NULL children. This is obviously not |
| very common, so we do not lose much. An example that triggers |
| this case is the sed "script" /\(\)/x. */ |
| && node->left != NULL |
| && (node->token.opr.idx >= BITSET_WORD_BITS |
| || !(dfa->used_bkref_map |
| & ((bitset_word_t) 1 << node->token.opr.idx)))) |
| return node->left; |
| |
| /* Convert the SUBEXP node to the concatenation of an |
| OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ |
| op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); |
| cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); |
| tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; |
| tree = create_tree (dfa, op, tree1, CONCAT); |
| if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; |
| op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; |
| return tree; |
| } |
| |
| /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton |
| nodes. Requires a postorder visit. */ |
| static reg_errcode_t |
| calc_first (void *extra, bin_tree_t *node) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) extra; |
| if (node->token.type == CONCAT) |
| { |
| node->first = node->left->first; |
| node->node_idx = node->left->node_idx; |
| } |
| else |
| { |
| node->first = node; |
| node->node_idx = re_dfa_add_node (dfa, node->token); |
| if (BE (node->node_idx == -1, 0)) |
| return REG_ESPACE; |
| if (node->token.type == ANCHOR) |
| dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Pass 2: compute NEXT on the tree. Preorder visit. */ |
| static reg_errcode_t |
| calc_next (void *extra, bin_tree_t *node) |
| { |
| switch (node->token.type) |
| { |
| case OP_DUP_ASTERISK: |
| node->left->next = node; |
| break; |
| case CONCAT: |
| node->left->next = node->right->first; |
| node->right->next = node->next; |
| break; |
| default: |
| if (node->left) |
| node->left->next = node->next; |
| if (node->right) |
| node->right->next = node->next; |
| break; |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ |
| static reg_errcode_t |
| link_nfa_nodes (void *extra, bin_tree_t *node) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) extra; |
| int idx = node->node_idx; |
| reg_errcode_t err = REG_NOERROR; |
| |
| switch (node->token.type) |
| { |
| case CONCAT: |
| break; |
| |
| case END_OF_RE: |
| assert (node->next == NULL); |
| break; |
| |
| case OP_DUP_ASTERISK: |
| case OP_ALT: |
| { |
| int left, right; |
| dfa->has_plural_match = 1; |
| if (node->left != NULL) |
| left = node->left->first->node_idx; |
| else |
| left = node->next->node_idx; |
| if (node->right != NULL) |
| right = node->right->first->node_idx; |
| else |
| right = node->next->node_idx; |
| assert (left > -1); |
| assert (right > -1); |
| err = re_node_set_init_2 (dfa->edests + idx, left, right); |
| } |
| break; |
| |
| case ANCHOR: |
| case OP_OPEN_SUBEXP: |
| case OP_CLOSE_SUBEXP: |
| err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); |
| break; |
| |
| case OP_BACK_REF: |
| dfa->nexts[idx] = node->next->node_idx; |
| if (node->token.type == OP_BACK_REF) |
| err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); |
| break; |
| |
| default: |
| assert (!IS_EPSILON_NODE (node->token.type)); |
| dfa->nexts[idx] = node->next->node_idx; |
| break; |
| } |
| |
| return err; |
| } |
| |
| /* Duplicate the epsilon closure of the node ROOT_NODE. |
| Note that duplicated nodes have constraint INIT_CONSTRAINT in addition |
| to their own constraint. */ |
| |
| static reg_errcode_t |
| internal_function |
| duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, |
| int root_node, unsigned int init_constraint) |
| { |
| int org_node, clone_node, ret; |
| unsigned int constraint = init_constraint; |
| for (org_node = top_org_node, clone_node = top_clone_node;;) |
| { |
| int org_dest, clone_dest; |
| if (dfa->nodes[org_node].type == OP_BACK_REF) |
| { |
| /* If the back reference epsilon-transit, its destination must |
| also have the constraint. Then duplicate the epsilon closure |
| of the destination of the back reference, and store it in |
| edests of the back reference. */ |
| org_dest = dfa->nexts[org_node]; |
| re_node_set_empty (dfa->edests + clone_node); |
| clone_dest = duplicate_node (dfa, org_dest, constraint); |
| if (BE (clone_dest == -1, 0)) |
| return REG_ESPACE; |
| dfa->nexts[clone_node] = dfa->nexts[org_node]; |
| ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| } |
| else if (dfa->edests[org_node].nelem == 0) |
| { |
| /* In case of the node can't epsilon-transit, don't duplicate the |
| destination and store the original destination as the |
| destination of the node. */ |
| dfa->nexts[clone_node] = dfa->nexts[org_node]; |
| break; |
| } |
| else if (dfa->edests[org_node].nelem == 1) |
| { |
| /* In case of the node can epsilon-transit, and it has only one |
| destination. */ |
| org_dest = dfa->edests[org_node].elems[0]; |
| re_node_set_empty (dfa->edests + clone_node); |
| /* If the node is root_node itself, it means the epsilon clsoure |
| has a loop. Then tie it to the destination of the root_node. */ |
| if (org_node == root_node && clone_node != org_node) |
| { |
| ret = re_node_set_insert (dfa->edests + clone_node, org_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| break; |
| } |
| /* In case of the node has another constraint, add it. */ |
| constraint |= dfa->nodes[org_node].constraint; |
| clone_dest = duplicate_node (dfa, org_dest, constraint); |
| if (BE (clone_dest == -1, 0)) |
| return REG_ESPACE; |
| ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| } |
| else /* dfa->edests[org_node].nelem == 2 */ |
| { |
| /* In case of the node can epsilon-transit, and it has two |
| destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ |
| org_dest = dfa->edests[org_node].elems[0]; |
| re_node_set_empty (dfa->edests + clone_node); |
| /* Search for a duplicated node which satisfies the constraint. */ |
| clone_dest = search_duplicated_node (dfa, org_dest, constraint); |
| if (clone_dest == -1) |
| { |
| /* There is no such duplicated node, create a new one. */ |
| reg_errcode_t err; |
| clone_dest = duplicate_node (dfa, org_dest, constraint); |
| if (BE (clone_dest == -1, 0)) |
| return REG_ESPACE; |
| ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| err = duplicate_node_closure (dfa, org_dest, clone_dest, |
| root_node, constraint); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| else |
| { |
| /* There is a duplicated node which satisfies the constraint, |
| use it to avoid infinite loop. */ |
| ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| } |
| |
| org_dest = dfa->edests[org_node].elems[1]; |
| clone_dest = duplicate_node (dfa, org_dest, constraint); |
| if (BE (clone_dest == -1, 0)) |
| return REG_ESPACE; |
| ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| } |
| org_node = org_dest; |
| clone_node = clone_dest; |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Search for a node which is duplicated from the node ORG_NODE, and |
| satisfies the constraint CONSTRAINT. */ |
| |
| static int |
| search_duplicated_node (const re_dfa_t *dfa, int org_node, |
| unsigned int constraint) |
| { |
| int idx; |
| for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) |
| { |
| if (org_node == dfa->org_indices[idx] |
| && constraint == dfa->nodes[idx].constraint) |
| return idx; /* Found. */ |
| } |
| return -1; /* Not found. */ |
| } |
| |
| /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. |
| Return the index of the new node, or -1 if insufficient storage is |
| available. */ |
| |
| static int |
| duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) |
| { |
| int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); |
| if (BE (dup_idx != -1, 1)) |
| { |
| dfa->nodes[dup_idx].constraint = constraint; |
| dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; |
| dfa->nodes[dup_idx].duplicated = 1; |
| |
| /* Store the index of the original node. */ |
| dfa->org_indices[dup_idx] = org_idx; |
| } |
| return dup_idx; |
| } |
| |
| static reg_errcode_t |
| calc_inveclosure (re_dfa_t *dfa) |
| { |
| int src, idx, ret; |
| for (idx = 0; idx < dfa->nodes_len; ++idx) |
| re_node_set_init_empty (dfa->inveclosures + idx); |
| |
| for (src = 0; src < dfa->nodes_len; ++src) |
| { |
| int *elems = dfa->eclosures[src].elems; |
| for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) |
| { |
| ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); |
| if (BE (ret == -1, 0)) |
| return REG_ESPACE; |
| } |
| } |
| |
| return REG_NOERROR; |
| } |
| |
| /* Calculate "eclosure" for all the node in DFA. */ |
| |
| static reg_errcode_t |
| calc_eclosure (re_dfa_t *dfa) |
| { |
| int node_idx, incomplete; |
| #ifdef DEBUG |
| assert (dfa->nodes_len > 0); |
| #endif |
| incomplete = 0; |
| /* For each nodes, calculate epsilon closure. */ |
| for (node_idx = 0; ; ++node_idx) |
| { |
| reg_errcode_t err; |
| re_node_set eclosure_elem; |
| if (node_idx == dfa->nodes_len) |
| { |
| if (!incomplete) |
| break; |
| incomplete = 0; |
| node_idx = 0; |
| } |
| |
| #ifdef DEBUG |
| assert (dfa->eclosures[node_idx].nelem != -1); |
| #endif |
| |
| /* If we have already calculated, skip it. */ |
| if (dfa->eclosures[node_idx].nelem != 0) |
| continue; |
| /* Calculate epsilon closure of `node_idx'. */ |
| err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| if (dfa->eclosures[node_idx].nelem == 0) |
| { |
| incomplete = 1; |
| re_node_set_free (&eclosure_elem); |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Calculate epsilon closure of NODE. */ |
| |
| static reg_errcode_t |
| calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) |
| { |
| reg_errcode_t err; |
| int i; |
| re_node_set eclosure; |
| int ret; |
| int incomplete = 0; |
| err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| /* This indicates that we are calculating this node now. |
| We reference this value to avoid infinite loop. */ |
| dfa->eclosures[node].nelem = -1; |
| |
| /* If the current node has constraints, duplicate all nodes |
| since they must inherit the constraints. */ |
| if (dfa->nodes[node].constraint |
| && dfa->edests[node].nelem |
| && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) |
| { |
| err = duplicate_node_closure (dfa, node, node, node, |
| dfa->nodes[node].constraint); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| |
| /* Expand each epsilon destination nodes. */ |
| if (IS_EPSILON_NODE(dfa->nodes[node].type)) |
| for (i = 0; i < dfa->edests[node].nelem; ++i) |
| { |
| re_node_set eclosure_elem; |
| int edest = dfa->edests[node].elems[i]; |
| /* If calculating the epsilon closure of `edest' is in progress, |
| return intermediate result. */ |
| if (dfa->eclosures[edest].nelem == -1) |
| { |
| incomplete = 1; |
| continue; |
| } |
| /* If we haven't calculated the epsilon closure of `edest' yet, |
| calculate now. Otherwise use calculated epsilon closure. */ |
| if (dfa->eclosures[edest].nelem == 0) |
| { |
| err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| else |
| eclosure_elem = dfa->eclosures[edest]; |
| /* Merge the epsilon closure of `edest'. */ |
| err = re_node_set_merge (&eclosure, &eclosure_elem); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| /* If the epsilon closure of `edest' is incomplete, |
| the epsilon closure of this node is also incomplete. */ |
| if (dfa->eclosures[edest].nelem == 0) |
| { |
| incomplete = 1; |
| re_node_set_free (&eclosure_elem); |
| } |
| } |
| |
| /* An epsilon closure includes itself. */ |
| ret = re_node_set_insert (&eclosure, node); |
| if (BE (ret < 0, 0)) |
| return REG_ESPACE; |
| if (incomplete && !root) |
| dfa->eclosures[node].nelem = 0; |
| else |
| dfa->eclosures[node] = eclosure; |
| *new_set = eclosure; |
| return REG_NOERROR; |
| } |
| |
| /* Functions for token which are used in the parser. */ |
| |
| /* Fetch a token from INPUT. |
| We must not use this function inside bracket expressions. */ |
| |
| static void |
| internal_function |
| fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) |
| { |
| re_string_skip_bytes (input, peek_token (result, input, syntax)); |
| } |
| |
| /* Peek a token from INPUT, and return the length of the token. |
| We must not use this function inside bracket expressions. */ |
| |
| static int |
| internal_function |
| peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
| { |
| unsigned char c; |
| |
| if (re_string_eoi (input)) |
| { |
| token->type = END_OF_RE; |
| return 0; |
| } |
| |
| c = re_string_peek_byte (input, 0); |
| token->opr.c = c; |
| |
| token->word_char = 0; |
| #ifdef RE_ENABLE_I18N |
| token->mb_partial = 0; |
| if (input->mb_cur_max > 1 && |
| !re_string_first_byte (input, re_string_cur_idx (input))) |
| { |
| token->type = CHARACTER; |
| token->mb_partial = 1; |
| return 1; |
| } |
| #endif |
| if (c == '\\') |
| { |
| unsigned char c2; |
| if (re_string_cur_idx (input) + 1 >= re_string_length (input)) |
| { |
| token->type = BACK_SLASH; |
| return 1; |
| } |
| |
| c2 = re_string_peek_byte_case (input, 1); |
| token->opr.c = c2; |
| token->type = CHARACTER; |
| #ifdef RE_ENABLE_I18N |
| if (input->mb_cur_max > 1) |
| { |
| wint_t wc = re_string_wchar_at (input, |
| re_string_cur_idx (input) + 1); |
| token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
| } |
| else |
| #endif |
| token->word_char = IS_WORD_CHAR (c2) != 0; |
| |
| switch (c2) |
| { |
| case '|': |
| if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) |
| token->type = OP_ALT; |
| break; |
| case '1': case '2': case '3': case '4': case '5': |
| case '6': case '7': case '8': case '9': |
| if (!(syntax & RE_NO_BK_REFS)) |
| { |
| token->type = OP_BACK_REF; |
| token->opr.idx = c2 - '1'; |
| } |
| break; |
| case '<': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = WORD_FIRST; |
| } |
| break; |
| case '>': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = WORD_LAST; |
| } |
| break; |
| case 'b': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = WORD_DELIM; |
| } |
| break; |
| case 'B': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = NOT_WORD_DELIM; |
| } |
| break; |
| case 'w': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| token->type = OP_WORD; |
| break; |
| case 'W': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| token->type = OP_NOTWORD; |
| break; |
| case 's': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| token->type = OP_SPACE; |
| break; |
| case 'S': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| token->type = OP_NOTSPACE; |
| break; |
| case '`': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = BUF_FIRST; |
| } |
| break; |
| case '\'': |
| if (!(syntax & RE_NO_GNU_OPS)) |
| { |
| token->type = ANCHOR; |
| token->opr.ctx_type = BUF_LAST; |
| } |
| break; |
| case '(': |
| if (!(syntax & RE_NO_BK_PARENS)) |
| token->type = OP_OPEN_SUBEXP; |
| break; |
| case ')': |
| if (!(syntax & RE_NO_BK_PARENS)) |
| token->type = OP_CLOSE_SUBEXP; |
| break; |
| case '+': |
| if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
| token->type = OP_DUP_PLUS; |
| break; |
| case '?': |
| if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) |
| token->type = OP_DUP_QUESTION; |
| break; |
| case '{': |
| if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
| token->type = OP_OPEN_DUP_NUM; |
| break; |
| case '}': |
| if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) |
| token->type = OP_CLOSE_DUP_NUM; |
| break; |
| default: |
| break; |
| } |
| return 2; |
| } |
| |
| token->type = CHARACTER; |
| #ifdef RE_ENABLE_I18N |
| if (input->mb_cur_max > 1) |
| { |
| wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); |
| token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; |
| } |
| else |
| #endif |
| token->word_char = IS_WORD_CHAR (token->opr.c); |
| |
| switch (c) |
| { |
| case '\n': |
| if (syntax & RE_NEWLINE_ALT) |
| token->type = OP_ALT; |
| break; |
| case '|': |
| if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) |
| token->type = OP_ALT; |
| break; |
| case '*': |
| token->type = OP_DUP_ASTERISK; |
| break; |
| case '+': |
| if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
| token->type = OP_DUP_PLUS; |
| break; |
| case '?': |
| if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) |
| token->type = OP_DUP_QUESTION; |
| break; |
| case '{': |
| if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
| token->type = OP_OPEN_DUP_NUM; |
| break; |
| case '}': |
| if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
| token->type = OP_CLOSE_DUP_NUM; |
| break; |
| case '(': |
| if (syntax & RE_NO_BK_PARENS) |
| token->type = OP_OPEN_SUBEXP; |
| break; |
| case ')': |
| if (syntax & RE_NO_BK_PARENS) |
| token->type = OP_CLOSE_SUBEXP; |
| break; |
| case '[': |
| token->type = OP_OPEN_BRACKET; |
| break; |
| case '.': |
| token->type = OP_PERIOD; |
| break; |
| case '^': |
| if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && |
| re_string_cur_idx (input) != 0) |
| { |
| char prev = re_string_peek_byte (input, -1); |
| if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') |
| break; |
| } |
| token->type = ANCHOR; |
| token->opr.ctx_type = LINE_FIRST; |
| break; |
| case '$': |
| if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && |
| re_string_cur_idx (input) + 1 != re_string_length (input)) |
| { |
| re_token_t next; |
| re_string_skip_bytes (input, 1); |
| peek_token (&next, input, syntax); |
| re_string_skip_bytes (input, -1); |
| if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) |
| break; |
| } |
| token->type = ANCHOR; |
| token->opr.ctx_type = LINE_LAST; |
| break; |
| default: |
| break; |
| } |
| return 1; |
| } |
| |
| /* Peek a token from INPUT, and return the length of the token. |
| We must not use this function out of bracket expressions. */ |
| |
| static int |
| internal_function |
| peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) |
| { |
| unsigned char c; |
| if (re_string_eoi (input)) |
| { |
| token->type = END_OF_RE; |
| return 0; |
| } |
| c = re_string_peek_byte (input, 0); |
| token->opr.c = c; |
| |
| #ifdef RE_ENABLE_I18N |
| if (input->mb_cur_max > 1 && |
| !re_string_first_byte (input, re_string_cur_idx (input))) |
| { |
| token->type = CHARACTER; |
| return 1; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) |
| && re_string_cur_idx (input) + 1 < re_string_length (input)) |
| { |
| /* In this case, '\' escape a character. */ |
| unsigned char c2; |
| re_string_skip_bytes (input, 1); |
| c2 = re_string_peek_byte (input, 0); |
| token->opr.c = c2; |
| token->type = CHARACTER; |
| return 1; |
| } |
| if (c == '[') /* '[' is a special char in a bracket exps. */ |
| { |
| unsigned char c2; |
| int token_len; |
| if (re_string_cur_idx (input) + 1 < re_string_length (input)) |
| c2 = re_string_peek_byte (input, 1); |
| else |
| c2 = 0; |
| token->opr.c = c2; |
| token_len = 2; |
| switch (c2) |
| { |
| case '.': |
| token->type = OP_OPEN_COLL_ELEM; |
| break; |
| case '=': |
| token->type = OP_OPEN_EQUIV_CLASS; |
| break; |
| case ':': |
| if (syntax & RE_CHAR_CLASSES) |
| { |
| token->type = OP_OPEN_CHAR_CLASS; |
| break; |
| } |
| /* else fall through. */ |
| default: |
| token->type = CHARACTER; |
| token->opr.c = c; |
| token_len = 1; |
| break; |
| } |
| return token_len; |
| } |
| switch (c) |
| { |
| case '-': |
| token->type = OP_CHARSET_RANGE; |
| break; |
| case ']': |
| token->type = OP_CLOSE_BRACKET; |
| break; |
| case '^': |
| token->type = OP_NON_MATCH_LIST; |
| break; |
| default: |
| token->type = CHARACTER; |
| } |
| return 1; |
| } |
| |
| /* Functions for parser. */ |
| |
| /* Entry point of the parser. |
| Parse the regular expression REGEXP and return the structure tree. |
| If an error has occurred, ERR is set by error code, and return NULL. |
| This function build the following tree, from regular expression <reg_exp>: |
| CAT |
| / \ |
| / \ |
| <reg_exp> EOR |
| |
| CAT means concatenation. |
| EOR means end of regular expression. */ |
| |
| static bin_tree_t * |
| parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, |
| reg_errcode_t *err) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_t *tree, *eor, *root; |
| re_token_t current_token; |
| dfa->syntax = syntax; |
| fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| eor = create_tree (dfa, NULL, NULL, END_OF_RE); |
| if (tree != NULL) |
| root = create_tree (dfa, tree, eor, CONCAT); |
| else |
| root = eor; |
| if (BE (eor == NULL || root == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| return root; |
| } |
| |
| /* This function build the following tree, from regular expression |
| <branch1>|<branch2>: |
| ALT |
| / \ |
| / \ |
| <branch1> <branch2> |
| |
| ALT means alternative, which represents the operator `|'. */ |
| |
| static bin_tree_t * |
| parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_t *tree, *branch = NULL; |
| tree = parse_branch (regexp, preg, token, syntax, nest, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| |
| while (token->type == OP_ALT) |
| { |
| fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| if (token->type != OP_ALT && token->type != END_OF_RE |
| && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
| { |
| branch = parse_branch (regexp, preg, token, syntax, nest, err); |
| if (BE (*err != REG_NOERROR && branch == NULL, 0)) |
| return NULL; |
| } |
| else |
| branch = NULL; |
| tree = create_tree (dfa, tree, branch, OP_ALT); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| } |
| return tree; |
| } |
| |
| /* This function build the following tree, from regular expression |
| <exp1><exp2>: |
| CAT |
| / \ |
| / \ |
| <exp1> <exp2> |
| |
| CAT means concatenation. */ |
| |
| static bin_tree_t * |
| parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| { |
| bin_tree_t *tree, *exp; |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| tree = parse_expression (regexp, preg, token, syntax, nest, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| |
| while (token->type != OP_ALT && token->type != END_OF_RE |
| && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) |
| { |
| exp = parse_expression (regexp, preg, token, syntax, nest, err); |
| if (BE (*err != REG_NOERROR && exp == NULL, 0)) |
| { |
| return NULL; |
| } |
| if (tree != NULL && exp != NULL) |
| { |
| tree = create_tree (dfa, tree, exp, CONCAT); |
| if (tree == NULL) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| } |
| else if (tree == NULL) |
| tree = exp; |
| /* Otherwise exp == NULL, we don't need to create new tree. */ |
| } |
| return tree; |
| } |
| |
| /* This function build the following tree, from regular expression a*: |
| * |
| | |
| a |
| */ |
| |
| static bin_tree_t * |
| parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_t *tree; |
| switch (token->type) |
| { |
| case CHARACTER: |
| tree = create_token_tree (dfa, NULL, NULL, token); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| { |
| while (!re_string_eoi (regexp) |
| && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) |
| { |
| bin_tree_t *mbc_remain; |
| fetch_token (token, regexp, syntax); |
| mbc_remain = create_token_tree (dfa, NULL, NULL, token); |
| tree = create_tree (dfa, tree, mbc_remain, CONCAT); |
| if (BE (mbc_remain == NULL || tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| } |
| } |
| #endif |
| break; |
| case OP_OPEN_SUBEXP: |
| tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| break; |
| case OP_OPEN_BRACKET: |
| tree = parse_bracket_exp (regexp, dfa, token, syntax, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| break; |
| case OP_BACK_REF: |
| if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) |
| { |
| *err = REG_ESUBREG; |
| return NULL; |
| } |
| dfa->used_bkref_map |= 1 << token->opr.idx; |
| tree = create_token_tree (dfa, NULL, NULL, token); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| ++dfa->nbackref; |
| dfa->has_mb_node = 1; |
| break; |
| case OP_OPEN_DUP_NUM: |
| if (syntax & RE_CONTEXT_INVALID_DUP) |
| { |
| *err = REG_BADRPT; |
| return NULL; |
| } |
| /* FALLTHROUGH */ |
| case OP_DUP_ASTERISK: |
| case OP_DUP_PLUS: |
| case OP_DUP_QUESTION: |
| if (syntax & RE_CONTEXT_INVALID_OPS) |
| { |
| *err = REG_BADRPT; |
| return NULL; |
| } |
| else if (syntax & RE_CONTEXT_INDEP_OPS) |
| { |
| fetch_token (token, regexp, syntax); |
| return parse_expression (regexp, preg, token, syntax, nest, err); |
| } |
| /* else fall through */ |
| case OP_CLOSE_SUBEXP: |
| if ((token->type == OP_CLOSE_SUBEXP) && |
| !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) |
| { |
| *err = REG_ERPAREN; |
| return NULL; |
| } |
| /* else fall through */ |
| case OP_CLOSE_DUP_NUM: |
| /* We treat it as a normal character. */ |
| |
| /* Then we can these characters as normal characters. */ |
| token->type = CHARACTER; |
| /* mb_partial and word_char bits should be initialized already |
| by peek_token. */ |
| tree = create_token_tree (dfa, NULL, NULL, token); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| break; |
| case ANCHOR: |
| if ((token->opr.ctx_type |
| & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) |
| && dfa->word_ops_used == 0) |
| init_word_char (dfa); |
| if (token->opr.ctx_type == WORD_DELIM |
| || token->opr.ctx_type == NOT_WORD_DELIM) |
| { |
| bin_tree_t *tree_first, *tree_last; |
| if (token->opr.ctx_type == WORD_DELIM) |
| { |
| token->opr.ctx_type = WORD_FIRST; |
| tree_first = create_token_tree (dfa, NULL, NULL, token); |
| token->opr.ctx_type = WORD_LAST; |
| } |
| else |
| { |
| token->opr.ctx_type = INSIDE_WORD; |
| tree_first = create_token_tree (dfa, NULL, NULL, token); |
| token->opr.ctx_type = INSIDE_NOTWORD; |
| } |
| tree_last = create_token_tree (dfa, NULL, NULL, token); |
| tree = create_tree (dfa, tree_first, tree_last, OP_ALT); |
| if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| } |
| else |
| { |
| tree = create_token_tree (dfa, NULL, NULL, token); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| } |
| /* We must return here, since ANCHORs can't be followed |
| by repetition operators. |
| eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", |
| it must not be "<ANCHOR(^)><REPEAT(*)>". */ |
| fetch_token (token, regexp, syntax); |
| return tree; |
| case OP_PERIOD: |
| tree = create_token_tree (dfa, NULL, NULL, token); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| if (dfa->mb_cur_max > 1) |
| dfa->has_mb_node = 1; |
| break; |
| case OP_WORD: |
| case OP_NOTWORD: |
| tree = build_charclass_op (dfa, regexp->trans, |
| "alnum", |
| "_", |
| token->type == OP_NOTWORD, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| break; |
| case OP_SPACE: |
| case OP_NOTSPACE: |
| tree = build_charclass_op (dfa, regexp->trans, |
| "space", |
| "", |
| token->type == OP_NOTSPACE, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| break; |
| case OP_ALT: |
| case END_OF_RE: |
| return NULL; |
| case BACK_SLASH: |
| *err = REG_EESCAPE; |
| return NULL; |
| default: |
| /* Must not happen? */ |
| #ifdef DEBUG |
| assert (0); |
| #endif |
| return NULL; |
| } |
| fetch_token (token, regexp, syntax); |
| |
| while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS |
| || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) |
| { |
| tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); |
| if (BE (*err != REG_NOERROR && tree == NULL, 0)) |
| return NULL; |
| /* In BRE consecutive duplications are not allowed. */ |
| if ((syntax & RE_CONTEXT_INVALID_DUP) |
| && (token->type == OP_DUP_ASTERISK |
| || token->type == OP_OPEN_DUP_NUM)) |
| { |
| *err = REG_BADRPT; |
| return NULL; |
| } |
| } |
| |
| return tree; |
| } |
| |
| /* This function build the following tree, from regular expression |
| (<reg_exp>): |
| SUBEXP |
| | |
| <reg_exp> |
| */ |
| |
| static bin_tree_t * |
| parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, |
| reg_syntax_t syntax, int nest, reg_errcode_t *err) |
| { |
| re_dfa_t *dfa = (re_dfa_t *) preg->buffer; |
| bin_tree_t *tree; |
| size_t cur_nsub; |
| cur_nsub = preg->re_nsub++; |
| |
| fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); |
| |
| /* The subexpression may be a null string. */ |
| if (token->type == OP_CLOSE_SUBEXP) |
| tree = NULL; |
| else |
| { |
| tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); |
| if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) |
| *err = REG_EPAREN; |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| } |
| |
| if (cur_nsub <= '9' - '1') |
| dfa->completed_bkref_map |= 1 << cur_nsub; |
| |
| tree = create_tree (dfa, tree, NULL, SUBEXP); |
| if (BE (tree == NULL, 0)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| tree->token.opr.idx = cur_nsub; |
| return tree; |
| } |
| |
| /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ |
| |
| static bin_tree_t * |
| parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, |
| re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) |
| { |
| bin_tree_t *tree = NULL, *old_tree = NULL; |
| int i, start, end, start_idx = re_string_cur_idx (regexp); |
| #ifndef RE_TOKEN_INIT_BUG |
| re_token_t start_token = *token; |
| #else |
| re_token_t start_token; |
| |
| memcpy ((void *) &start_token, (void *) token, sizeof start_token); |
| #endif |
| |
| if (token->type == OP_OPEN_DUP_NUM) |
| { |
| end = 0; |
| start = fetch_number (regexp, token, syntax); |
| if (start == -1) |
| { |
| if (token->type == CHARACTER && token->opr.c == ',') |
| start = 0; /* We treat "{,m}" as "{0,m}". */ |
| else |
| { |
| *err = REG_BADBR; /* <re>{} is invalid. */ |
| return NULL; |
| } |
| } |
| if (BE (start != -2, 1)) |
| { |
| /* We treat "{n}" as "{n,n}". */ |
| end = ((token->type == OP_CLOSE_DUP_NUM) ? start |
| : ((token->type == CHARACTER && token->opr.c == ',') |
| ? fetch_number (regexp, token, syntax) : -2)); |
| } |
| if (BE (start == -2 || end == -2, 0)) |
| { |
| /* Invalid sequence. */ |
| if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) |
| { |
| if (token->type == END_OF_RE) |
| *err = REG_EBRACE; |
| else |
| *err = REG_BADBR; |
| |
| return NULL; |
| } |
| |
| /* If the syntax bit is set, rollback. */ |
| re_string_set_index (regexp, start_idx); |
| *token = start_token; |
| token->type = CHARACTER; |
| /* mb_partial and word_char bits should be already initialized by |
| peek_token. */ |
| return elem; |
| } |
| |
| if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) |
| { |
| /* First number greater than second. */ |
| *err = REG_BADBR; |
| return NULL; |
| } |
| } |
| else |
| { |
| start = (token->type == OP_DUP_PLUS) ? 1 : 0; |
| end = (token->type == OP_DUP_QUESTION) ? 1 : -1; |
| } |
| |
| fetch_token (token, regexp, syntax); |
| |
| if (BE (elem == NULL, 0)) |
| return NULL; |
| if (BE (start == 0 && end == 0, 0)) |
| { |
| postorder (elem, free_tree, NULL); |
| return NULL; |
| } |
| |
| /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ |
| if (BE (start > 0, 0)) |
| { |
| tree = elem; |
| for (i = 2; i <= start; ++i) |
| { |
| elem = duplicate_tree (elem, dfa); |
| tree = create_tree (dfa, tree, elem, CONCAT); |
| if (BE (elem == NULL || tree == NULL, 0)) |
| goto parse_dup_op_espace; |
| } |
| |
| if (start == end) |
| return tree; |
| |
| /* Duplicate ELEM before it is marked optional. */ |
| elem = duplicate_tree (elem, dfa); |
| old_tree = tree; |
| } |
| else |
| old_tree = NULL; |
| |
| if (elem->token.type == SUBEXP) |
| postorder (elem, mark_opt_subexp, (void *) (intptr_t) elem->token.opr.idx); |
| |
| tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); |
| if (BE (tree == NULL, 0)) |
| goto parse_dup_op_espace; |
| |
| /* This loop is actually executed only when end != -1, |
| to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have |
| already created the start+1-th copy. */ |
| for (i = start + 2; i <= end; ++i) |
| { |
| elem = duplicate_tree (elem, dfa); |
| tree = create_tree (dfa, tree, elem, CONCAT); |
| if (BE (elem == NULL || tree == NULL, 0)) |
| goto parse_dup_op_espace; |
| |
| tree = create_tree (dfa, tree, NULL, OP_ALT); |
| if (BE (tree == NULL, 0)) |
| goto parse_dup_op_espace; |
| } |
| |
| if (old_tree) |
| tree = create_tree (dfa, old_tree, tree, CONCAT); |
| |
| return tree; |
| |
| parse_dup_op_espace: |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| /* Size of the names for collating symbol/equivalence_class/character_class. |
| I'm not sure, but maybe enough. */ |
| #define BRACKET_NAME_BUF_SIZE 32 |
| |
| #ifndef _LIBC |
| /* Local function for parse_bracket_exp only used in case of NOT _LIBC. |
| Build the range expression which starts from START_ELEM, and ends |
| at END_ELEM. The result are written to MBCSET and SBCSET. |
| RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
| mbcset->range_ends, is a pointer argument since we may |
| update it. */ |
| |
| static reg_errcode_t |
| internal_function |
| # ifdef RE_ENABLE_I18N |
| build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, |
| bracket_elem_t *start_elem, bracket_elem_t *end_elem) |
| # else /* not RE_ENABLE_I18N */ |
| build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, |
| bracket_elem_t *end_elem) |
| # endif /* not RE_ENABLE_I18N */ |
| { |
| unsigned int start_ch, end_ch; |
| /* Equivalence Classes and Character Classes can't be a range start/end. */ |
| if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
| || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
| 0)) |
| return REG_ERANGE; |
| |
| /* We can handle no multi character collating elements without libc |
| support. */ |
| if (BE ((start_elem->type == COLL_SYM |
| && strlen ((char *) start_elem->opr.name) > 1) |
| || (end_elem->type == COLL_SYM |
| && strlen ((char *) end_elem->opr.name) > 1), 0)) |
| return REG_ECOLLATE; |
| |
| # ifdef RE_ENABLE_I18N |
| { |
| wchar_t wc; |
| wint_t start_wc; |
| wint_t end_wc; |
| wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; |
| |
| start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch |
| : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
| : 0)); |
| end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch |
| : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
| : 0)); |
| #ifdef GAWK |
| /* |
| * Fedora Core 2, maybe others, have broken `btowc' that returns -1 |
| * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are |
| * unsigned, so we don't have sign extension problems. |
| */ |
| start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
| ? start_ch : start_elem->opr.wch); |
| end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
| ? end_ch : end_elem->opr.wch); |
| #else |
| start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) |
| ? __btowc (start_ch) : start_elem->opr.wch); |
| end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) |
| ? __btowc (end_ch) : end_elem->opr.wch); |
| #endif |
| if (start_wc == WEOF || end_wc == WEOF) |
| return REG_ECOLLATE; |
| cmp_buf[0] = start_wc; |
| cmp_buf[4] = end_wc; |
| if (wcscoll (cmp_buf, cmp_buf + 4) > 0) |
| return REG_ERANGE; |
| |
| /* Got valid collation sequence values, add them as a new entry. |
| However, for !_LIBC we have no collation elements: if the |
| character set is single byte, the single byte character set |
| that we build below suffices. parse_bracket_exp passes |
| no MBCSET if dfa->mb_cur_max == 1. */ |
| if (mbcset) |
| { |
| /* Check the space of the arrays. */ |
| if (BE (*range_alloc == mbcset->nranges, 0)) |
| { |
| /* There is not enough space, need realloc. */ |
| wchar_t *new_array_start, *new_array_end; |
| int new_nranges; |
| |
| /* +1 in case of mbcset->nranges is 0. */ |
| new_nranges = 2 * mbcset->nranges + 1; |
| /* Use realloc since mbcset->range_starts and mbcset->range_ends |
| are NULL if *range_alloc == 0. */ |
| new_array_start = re_realloc (mbcset->range_starts, wchar_t, |
| new_nranges); |
| new_array_end = re_realloc (mbcset->range_ends, wchar_t, |
| new_nranges); |
| |
| if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
| return REG_ESPACE; |
| |
| mbcset->range_starts = new_array_start; |
| mbcset->range_ends = new_array_end; |
| *range_alloc = new_nranges; |
| } |
| |
| mbcset->range_starts[mbcset->nranges] = start_wc; |
| mbcset->range_ends[mbcset->nranges++] = end_wc; |
| } |
| |
| /* Build the table for single byte characters. */ |
| for (wc = 0; wc < SBC_MAX; ++wc) |
| { |
| cmp_buf[2] = wc; |
| if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 |
| && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) |
| bitset_set (sbcset, wc); |
| } |
| } |
| # else /* not RE_ENABLE_I18N */ |
| { |
| unsigned int ch; |
| start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch |
| : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] |
| : 0)); |
| end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch |
| : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] |
| : 0)); |
| if (start_ch > end_ch) |
| return REG_ERANGE; |
| /* Build the table for single byte characters. */ |
| for (ch = 0; ch < SBC_MAX; ++ch) |
| if (start_ch <= ch && ch <= end_ch) |
| bitset_set (sbcset, ch); |
| } |
| # endif /* not RE_ENABLE_I18N */ |
| return REG_NOERROR; |
| } |
| #endif /* not _LIBC */ |
| |
| #ifndef _LIBC |
| /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. |
| Build the collating element which is represented by NAME. |
| The result are written to MBCSET and SBCSET. |
| COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
| pointer argument since we may update it. */ |
| |
| static reg_errcode_t |
| internal_function |
| # ifdef RE_ENABLE_I18N |
| build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, |
| int *coll_sym_alloc, const unsigned char *name) |
| # else /* not RE_ENABLE_I18N */ |
| build_collating_symbol (bitset_t sbcset, const unsigned char *name) |
| # endif /* not RE_ENABLE_I18N */ |
| { |
| size_t name_len = strlen ((const char *) name); |
| if (BE (name_len != 1, 0)) |
| return REG_ECOLLATE; |
| else |
| { |
| bitset_set (sbcset, name[0]); |
| return REG_NOERROR; |
| } |
| } |
| #endif /* not _LIBC */ |
| |
| /* This function parse bracket expression like "[abc]", "[a-c]", |
| "[[.a-a.]]" etc. */ |
| |
| static bin_tree_t * |
| parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, |
| reg_syntax_t syntax, reg_errcode_t *err) |
| { |
| #ifdef _LIBC |
| const unsigned char *collseqmb; |
| const char *collseqwc; |
| uint32_t nrules; |
| int32_t table_size; |
| const int32_t *symb_table; |
| const unsigned char *extra; |
| |
| /* Local function for parse_bracket_exp used in _LIBC environment. |
| Seek the collating symbol entry correspondings to NAME. |
| Return the index of the symbol in the SYMB_TABLE. */ |
| |
| auto inline int32_t |
| __attribute ((always_inline)) |
| seek_collating_symbol_entry (name, name_len) |
| const unsigned char *name; |
| size_t name_len; |
| { |
| int32_t hash = elem_hash ((const char *) name, name_len); |
| int32_t elem = hash % table_size; |
| if (symb_table[2 * elem] != 0) |
| { |
| int32_t second = hash % (table_size - 2) + 1; |
| |
| do |
| { |
| /* First compare the hashing value. */ |
| if (symb_table[2 * elem] == hash |
| /* Compare the length of the name. */ |
| && name_len == extra[symb_table[2 * elem + 1]] |
| /* Compare the name. */ |
| && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], |
| name_len) == 0) |
| { |
| /* Yep, this is the entry. */ |
| break; |
| } |
| |
| /* Next entry. */ |
| elem += second; |
| } |
| while (symb_table[2 * elem] != 0); |
| } |
| return elem; |
| } |
| |
| /* Local function for parse_bracket_exp used in _LIBC environment. |
| Look up the collation sequence value of BR_ELEM. |
| Return the value if succeeded, UINT_MAX otherwise. */ |
| |
| auto inline unsigned int |
| __attribute ((always_inline)) |
| lookup_collation_sequence_value (br_elem) |
| bracket_elem_t *br_elem; |
| { |
| if (br_elem->type == SB_CHAR) |
| { |
| /* |
| if (MB_CUR_MAX == 1) |
| */ |
| if (nrules == 0) |
| return collseqmb[br_elem->opr.ch]; |
| else |
| { |
| wint_t wc = __btowc (br_elem->opr.ch); |
| return __collseq_table_lookup (collseqwc, wc); |
| } |
| } |
| else if (br_elem->type == MB_CHAR) |
| { |
| if (nrules != 0) |
| return __collseq_table_lookup (collseqwc, br_elem->opr.wch); |
| } |
| else if (br_elem->type == COLL_SYM) |
| { |
| size_t sym_name_len = strlen ((char *) br_elem->opr.name); |
| if (nrules != 0) |
| { |
| int32_t elem, idx; |
| elem = seek_collating_symbol_entry (br_elem->opr.name, |
| sym_name_len); |
| if (symb_table[2 * elem] != 0) |
| { |
| /* We found the entry. */ |
| idx = symb_table[2 * elem + 1]; |
| /* Skip the name of collating element name. */ |
| idx += 1 + extra[idx]; |
| /* Skip the byte sequence of the collating element. */ |
| idx += 1 + extra[idx]; |
| /* Adjust for the alignment. */ |
| idx = (idx + 3) & ~3; |
| /* Skip the multibyte collation sequence value. */ |
| idx += sizeof (unsigned int); |
| /* Skip the wide char sequence of the collating element. */ |
| idx += sizeof (unsigned int) * |
| (1 + *(unsigned int *) (extra + idx)); |
| /* Return the collation sequence value. */ |
| return *(unsigned int *) (extra + idx); |
| } |
| else if (symb_table[2 * elem] == 0 && sym_name_len == 1) |
| { |
| /* No valid character. Match it as a single byte |
| character. */ |
| return collseqmb[br_elem->opr.name[0]]; |
| } |
| } |
| else if (sym_name_len == 1) |
| return collseqmb[br_elem->opr.name[0]]; |
| } |
| return UINT_MAX; |
| } |
| |
| /* Local function for parse_bracket_exp used in _LIBC environment. |
| Build the range expression which starts from START_ELEM, and ends |
| at END_ELEM. The result are written to MBCSET and SBCSET. |
| RANGE_ALLOC is the allocated size of mbcset->range_starts, and |
| mbcset->range_ends, is a pointer argument since we may |
| update it. */ |
| |
| auto inline reg_errcode_t |
| __attribute ((always_inline)) |
| build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) |
| re_charset_t *mbcset; |
| int *range_alloc; |
| bitset_t sbcset; |
| bracket_elem_t *start_elem, *end_elem; |
| { |
| unsigned int ch; |
| uint32_t start_collseq; |
| uint32_t end_collseq; |
| |
| /* Equivalence Classes and Character Classes can't be a range |
| start/end. */ |
| if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS |
| || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, |
| 0)) |
| return REG_ERANGE; |
| |
| start_collseq = lookup_collation_sequence_value (start_elem); |
| end_collseq = lookup_collation_sequence_value (end_elem); |
| /* Check start/end collation sequence values. */ |
| if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) |
| return REG_ECOLLATE; |
| if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) |
| return REG_ERANGE; |
| |
| /* Got valid collation sequence values, add them as a new entry. |
| However, if we have no collation elements, and the character set |
| is single byte, the single byte character set that we |
| build below suffices. */ |
| if (nrules > 0 || dfa->mb_cur_max > 1) |
| { |
| /* Check the space of the arrays. */ |
| if (BE (*range_alloc == mbcset->nranges, 0)) |
| { |
| /* There is not enough space, need realloc. */ |
| uint32_t *new_array_start; |
| uint32_t *new_array_end; |
| int new_nranges; |
| |
| /* +1 in case of mbcset->nranges is 0. */ |
| new_nranges = 2 * mbcset->nranges + 1; |
| new_array_start = re_realloc (mbcset->range_starts, uint32_t, |
| new_nranges); |
| new_array_end = re_realloc (mbcset->range_ends, uint32_t, |
| new_nranges); |
| |
| if (BE (new_array_start == NULL || new_array_end == NULL, 0)) |
| return REG_ESPACE; |
| |
| mbcset->range_starts = new_array_start; |
| mbcset->range_ends = new_array_end; |
| *range_alloc = new_nranges; |
| } |
| |
| mbcset->range_starts[mbcset->nranges] = start_collseq; |
| mbcset->range_ends[mbcset->nranges++] = end_collseq; |
| } |
| |
| /* Build the table for single byte characters. */ |
| for (ch = 0; ch < SBC_MAX; ch++) |
| { |
| uint32_t ch_collseq; |
| /* |
| if (MB_CUR_MAX == 1) |
| */ |
| if (nrules == 0) |
| ch_collseq = collseqmb[ch]; |
| else |
| ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); |
| if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) |
| bitset_set (sbcset, ch); |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Local function for parse_bracket_exp used in _LIBC environment. |
| Build the collating element which is represented by NAME. |
| The result are written to MBCSET and SBCSET. |
| COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a |
| pointer argument since we may update it. */ |
| |
| auto inline reg_errcode_t |
| __attribute ((always_inline)) |
| build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) |
| re_charset_t *mbcset; |
| int *coll_sym_alloc; |
| bitset_t sbcset; |
| const unsigned char *name; |
| { |
| int32_t elem, idx; |
| size_t name_len = strlen ((const char *) name); |
| if (nrules != 0) |
| { |
| elem = seek_collating_symbol_entry (name, name_len); |
| if (symb_table[2 * elem] != 0) |
| { |
| /* We found the entry. */ |
| idx = symb_table[2 * elem + 1]; |
| /* Skip the name of collating element name. */ |
| idx += 1 + extra[idx]; |
| } |
| else if (symb_table[2 * elem] == 0 && name_len == 1) |
| { |
| /* No valid character, treat it as a normal |
| character. */ |
| bitset_set (sbcset, name[0]); |
| return REG_NOERROR; |
| } |
| else |
| return REG_ECOLLATE; |
| |
| /* Got valid collation sequence, add it as a new entry. */ |
| /* Check the space of the arrays. */ |
| if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) |
| { |
| /* Not enough, realloc it. */ |
| /* +1 in case of mbcset->ncoll_syms is 0. */ |
| int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; |
| /* Use realloc since mbcset->coll_syms is NULL |
| if *alloc == 0. */ |
| int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, |
| new_coll_sym_alloc); |
| if (BE (new_coll_syms == NULL, 0)) |
| return REG_ESPACE; |
| mbcset->coll_syms = new_coll_syms; |
| *coll_sym_alloc = new_coll_sym_alloc; |
| } |
| mbcset->coll_syms[mbcset->ncoll_syms++] = idx; |
| return REG_NOERROR; |
| } |
| else |
| { |
| if (BE (name_len != 1, 0)) |
| return REG_ECOLLATE; |
| else |
| { |
| bitset_set (sbcset, name[0]); |
| return REG_NOERROR; |
| } |
| } |
| } |
| #endif |
| |
| re_token_t br_token; |
| re_bitset_ptr_t sbcset; |
| #ifdef RE_ENABLE_I18N |
| re_charset_t *mbcset; |
| int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; |
| int equiv_class_alloc = 0, char_class_alloc = 0; |
| #endif /* not RE_ENABLE_I18N */ |
| int non_match = 0; |
| bin_tree_t *work_tree; |
| int token_len; |
| int first_round = 1; |
| #ifdef _LIBC |
| collseqmb = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
| nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| if (nrules) |
| { |
| /* |
| if (MB_CUR_MAX > 1) |
| */ |
| collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
| table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); |
| symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_TABLEMB); |
| extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_SYMB_EXTRAMB); |
| } |
| #endif |
| sbcset = (re_bitset_ptr_t) calloc (1, sizeof (bitset_t)); |
| #ifdef RE_ENABLE_I18N |
| mbcset = (re_charset_t *) calloc (1, sizeof (re_charset_t)); |
| #endif /* RE_ENABLE_I18N */ |
| #ifdef RE_ENABLE_I18N |
| if (BE (sbcset == NULL || mbcset == NULL, 0)) |
| #else |
| if (BE (sbcset == NULL, 0)) |
| #endif /* RE_ENABLE_I18N */ |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| token_len = peek_token_bracket (token, regexp, syntax); |
| if (BE (token->type == END_OF_RE, 0)) |
| { |
| *err = REG_BADPAT; |
| goto parse_bracket_exp_free_return; |
| } |
| if (token->type == OP_NON_MATCH_LIST) |
| { |
| #ifdef RE_ENABLE_I18N |
| mbcset->non_match = 1; |
| #endif /* not RE_ENABLE_I18N */ |
| non_match = 1; |
| if (syntax & RE_HAT_LISTS_NOT_NEWLINE) |
| bitset_set (sbcset, '\n'); |
| re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| token_len = peek_token_bracket (token, regexp, syntax); |
| if (BE (token->type == END_OF_RE, 0)) |
| { |
| *err = REG_BADPAT; |
| goto parse_bracket_exp_free_return; |
| } |
| } |
| |
| /* We treat the first ']' as a normal character. */ |
| if (token->type == OP_CLOSE_BRACKET) |
| token->type = CHARACTER; |
| |
| while (1) |
| { |
| bracket_elem_t start_elem, end_elem; |
| unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; |
| unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; |
| reg_errcode_t ret; |
| int token_len2 = 0, is_range_exp = 0; |
| re_token_t token2; |
| |
| start_elem.opr.name = start_name_buf; |
| ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, |
| syntax, first_round); |
| if (BE (ret != REG_NOERROR, 0)) |
| { |
| *err = ret; |
| goto parse_bracket_exp_free_return; |
| } |
| first_round = 0; |
| |
| /* Get information about the next token. We need it in any case. */ |
| token_len = peek_token_bracket (token, regexp, syntax); |
| |
| /* Do not check for ranges if we know they are not allowed. */ |
| if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) |
| { |
| if (BE (token->type == END_OF_RE, 0)) |
| { |
| *err = REG_EBRACK; |
| goto parse_bracket_exp_free_return; |
| } |
| if (token->type == OP_CHARSET_RANGE) |
| { |
| re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ |
| token_len2 = peek_token_bracket (&token2, regexp, syntax); |
| if (BE (token2.type == END_OF_RE, 0)) |
| { |
| *err = REG_EBRACK; |
| goto parse_bracket_exp_free_return; |
| } |
| if (token2.type == OP_CLOSE_BRACKET) |
| { |
| /* We treat the last '-' as a normal character. */ |
| re_string_skip_bytes (regexp, -token_len); |
| token->type = CHARACTER; |
| } |
| else |
| is_range_exp = 1; |
| } |
| } |
| |
| if (is_range_exp == 1) |
| { |
| end_elem.opr.name = end_name_buf; |
| ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, |
| dfa, syntax, 1); |
| if (BE (ret != REG_NOERROR, 0)) |
| { |
| *err = ret; |
| goto parse_bracket_exp_free_return; |
| } |
| |
| token_len = peek_token_bracket (token, regexp, syntax); |
| |
| #ifdef _LIBC |
| *err = build_range_exp (sbcset, mbcset, &range_alloc, |
| &start_elem, &end_elem); |
| #else |
| # ifdef RE_ENABLE_I18N |
| *err = build_range_exp (sbcset, |
| dfa->mb_cur_max > 1 ? mbcset : NULL, |
| &range_alloc, &start_elem, &end_elem); |
| # else |
| *err = build_range_exp (sbcset, &start_elem, &end_elem); |
| # endif |
| #endif /* RE_ENABLE_I18N */ |
| if (BE (*err != REG_NOERROR, 0)) |
| goto parse_bracket_exp_free_return; |
| } |
| else |
| { |
| switch (start_elem.type) |
| { |
| case SB_CHAR: |
| bitset_set (sbcset, start_elem.opr.ch); |
| break; |
| #ifdef RE_ENABLE_I18N |
| case MB_CHAR: |
| /* Check whether the array has enough space. */ |
| if (BE (mbchar_alloc == mbcset->nmbchars, 0)) |
| { |
| wchar_t *new_mbchars; |
| /* Not enough, realloc it. */ |
| /* +1 in case of mbcset->nmbchars is 0. */ |
| mbchar_alloc = 2 * mbcset->nmbchars + 1; |
| /* Use realloc since array is NULL if *alloc == 0. */ |
| new_mbchars = re_realloc (mbcset->mbchars, wchar_t, |
| mbchar_alloc); |
| if (BE (new_mbchars == NULL, 0)) |
| goto parse_bracket_exp_espace; |
| mbcset->mbchars = new_mbchars; |
| } |
| mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; |
| break; |
| #endif /* RE_ENABLE_I18N */ |
| case EQUIV_CLASS: |
| *err = build_equiv_class (sbcset, |
| #ifdef RE_ENABLE_I18N |
| mbcset, &equiv_class_alloc, |
| #endif /* RE_ENABLE_I18N */ |
| start_elem.opr.name); |
| if (BE (*err != REG_NOERROR, 0)) |
| goto parse_bracket_exp_free_return; |
| break; |
| case COLL_SYM: |
| *err = build_collating_symbol (sbcset, |
| #ifdef RE_ENABLE_I18N |
| mbcset, &coll_sym_alloc, |
| #endif /* RE_ENABLE_I18N */ |
| start_elem.opr.name); |
| if (BE (*err != REG_NOERROR, 0)) |
| goto parse_bracket_exp_free_return; |
| break; |
| case CHAR_CLASS: |
| *err = build_charclass (regexp->trans, sbcset, |
| #ifdef RE_ENABLE_I18N |
| mbcset, &char_class_alloc, |
| #endif /* RE_ENABLE_I18N */ |
| (const char *) start_elem.opr.name, syntax); |
| if (BE (*err != REG_NOERROR, 0)) |
| goto parse_bracket_exp_free_return; |
| break; |
| default: |
| assert (0); |
| break; |
| } |
| } |
| if (BE (token->type == END_OF_RE, 0)) |
| { |
| *err = REG_EBRACK; |
| goto parse_bracket_exp_free_return; |
| } |
| if (token->type == OP_CLOSE_BRACKET) |
| break; |
| } |
| |
| re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| |
| /* If it is non-matching list. */ |
| if (non_match) |
| bitset_not (sbcset); |
| |
| #ifdef RE_ENABLE_I18N |
| /* Ensure only single byte characters are set. */ |
| if (dfa->mb_cur_max > 1) |
| bitset_mask (sbcset, dfa->sb_char); |
| |
| if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes |
| || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes |
| || mbcset->non_match))) |
| { |
| bin_tree_t *mbc_tree; |
| int sbc_idx; |
| /* Build a tree for complex bracket. */ |
| dfa->has_mb_node = 1; |
| br_token.type = COMPLEX_BRACKET; |
| br_token.opr.mbcset = mbcset; |
| mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| if (BE (mbc_tree == NULL, 0)) |
| goto parse_bracket_exp_espace; |
| for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) |
| if (sbcset[sbc_idx]) |
| break; |
| /* If there are no bits set in sbcset, there is no point |
| of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ |
| if (sbc_idx < BITSET_WORDS) |
| { |
| /* Build a tree for simple bracket. */ |
| br_token.type = SIMPLE_BRACKET; |
| br_token.opr.sbcset = sbcset; |
| work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| if (BE (work_tree == NULL, 0)) |
| goto parse_bracket_exp_espace; |
| |
| /* Then join them by ALT node. */ |
| work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); |
| if (BE (work_tree == NULL, 0)) |
| goto parse_bracket_exp_espace; |
| } |
| else |
| { |
| re_free (sbcset); |
| work_tree = mbc_tree; |
| } |
| } |
| else |
| #endif /* not RE_ENABLE_I18N */ |
| { |
| #ifdef RE_ENABLE_I18N |
| free_charset (mbcset); |
| #endif |
| /* Build a tree for simple bracket. */ |
| br_token.type = SIMPLE_BRACKET; |
| br_token.opr.sbcset = sbcset; |
| work_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| if (BE (work_tree == NULL, 0)) |
| goto parse_bracket_exp_espace; |
| } |
| return work_tree; |
| |
| parse_bracket_exp_espace: |
| *err = REG_ESPACE; |
| parse_bracket_exp_free_return: |
| re_free (sbcset); |
| #ifdef RE_ENABLE_I18N |
| free_charset (mbcset); |
| #endif /* RE_ENABLE_I18N */ |
| return NULL; |
| } |
| |
| /* Parse an element in the bracket expression. */ |
| |
| static reg_errcode_t |
| parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, |
| re_token_t *token, int token_len, re_dfa_t *dfa, |
| reg_syntax_t syntax, int accept_hyphen) |
| { |
| #ifdef RE_ENABLE_I18N |
| int cur_char_size; |
| cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); |
| if (cur_char_size > 1) |
| { |
| elem->type = MB_CHAR; |
| elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); |
| re_string_skip_bytes (regexp, cur_char_size); |
| return REG_NOERROR; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| re_string_skip_bytes (regexp, token_len); /* Skip a token. */ |
| if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS |
| || token->type == OP_OPEN_EQUIV_CLASS) |
| return parse_bracket_symbol (elem, regexp, token); |
| if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) |
| { |
| /* A '-' must only appear as anything but a range indicator before |
| the closing bracket. Everything else is an error. */ |
| re_token_t token2; |
| (void) peek_token_bracket (&token2, regexp, syntax); |
| if (token2.type != OP_CLOSE_BRACKET) |
| /* The actual error value is not standardized since this whole |
| case is undefined. But ERANGE makes good sense. */ |
| return REG_ERANGE; |
| } |
| elem->type = SB_CHAR; |
| elem->opr.ch = token->opr.c; |
| return REG_NOERROR; |
| } |
| |
| /* Parse a bracket symbol in the bracket expression. Bracket symbols are |
| such as [:<character_class>:], [.<collating_element>.], and |
| [=<equivalent_class>=]. */ |
| |
| static reg_errcode_t |
| parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, |
| re_token_t *token) |
| { |
| unsigned char ch, delim = token->opr.c; |
| int i = 0; |
| if (re_string_eoi(regexp)) |
| return REG_EBRACK; |
| for (;; ++i) |
| { |
| if (i >= BRACKET_NAME_BUF_SIZE) |
| return REG_EBRACK; |
| if (token->type == OP_OPEN_CHAR_CLASS) |
| ch = re_string_fetch_byte_case (regexp); |
| else |
| ch = re_string_fetch_byte (regexp); |
| if (re_string_eoi(regexp)) |
| return REG_EBRACK; |
| if (ch == delim && re_string_peek_byte (regexp, 0) == ']') |
| break; |
| elem->opr.name[i] = ch; |
| } |
| re_string_skip_bytes (regexp, 1); |
| elem->opr.name[i] = '\0'; |
| switch (token->type) |
| { |
| case OP_OPEN_COLL_ELEM: |
| elem->type = COLL_SYM; |
| break; |
| case OP_OPEN_EQUIV_CLASS: |
| elem->type = EQUIV_CLASS; |
| break; |
| case OP_OPEN_CHAR_CLASS: |
| elem->type = CHAR_CLASS; |
| break; |
| default: |
| break; |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Helper function for parse_bracket_exp. |
| Build the equivalence class which is represented by NAME. |
| The result are written to MBCSET and SBCSET. |
| EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, |
| is a pointer argument since we may update it. */ |
| |
| static reg_errcode_t |
| #ifdef RE_ENABLE_I18N |
| build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, |
| int *equiv_class_alloc, const unsigned char *name) |
| #else /* not RE_ENABLE_I18N */ |
| build_equiv_class (bitset_t sbcset, const unsigned char *name) |
| #endif /* not RE_ENABLE_I18N */ |
| { |
| #ifdef _LIBC |
| uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| if (nrules != 0) |
| { |
| const int32_t *table, *indirect; |
| const unsigned char *weights, *extra, *cp; |
| unsigned char char_buf[2]; |
| int32_t idx1, idx2; |
| unsigned int ch; |
| size_t len; |
| /* This #include defines a local function! */ |
| # include <locale/weight.h> |
| /* Calculate the index for equivalence class. */ |
| cp = name; |
| table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_WEIGHTMB); |
| extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_EXTRAMB); |
| indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, |
| _NL_COLLATE_INDIRECTMB); |
| idx1 = findidx (&cp); |
| if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) |
| /* This isn't a valid character. */ |
| return REG_ECOLLATE; |
| |
| /* Build single byte matching table for this equivalence class. */ |
| char_buf[1] = (unsigned char) '\0'; |
| len = weights[idx1 & 0xffffff]; |
| for (ch = 0; ch < SBC_MAX; ++ch) |
| { |
| char_buf[0] = ch; |
| cp = char_buf; |
| idx2 = findidx (&cp); |
| /* |
| idx2 = table[ch]; |
| */ |
| if (idx2 == 0) |
| /* This isn't a valid character. */ |
| continue; |
| /* Compare only if the length matches and the collation rule |
| index is the same. */ |
| if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) |
| { |
| int cnt = 0; |
| |
| while (cnt <= len && |
| weights[(idx1 & 0xffffff) + 1 + cnt] |
| == weights[(idx2 & 0xffffff) + 1 + cnt]) |
| ++cnt; |
| |
| if (cnt > len) |
| bitset_set (sbcset, ch); |
| } |
| } |
| /* Check whether the array has enough space. */ |
| if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) |
| { |
| /* Not enough, realloc it. */ |
| /* +1 in case of mbcset->nequiv_classes is 0. */ |
| int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; |
| /* Use realloc since the array is NULL if *alloc == 0. */ |
| int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, |
| int32_t, |
| new_equiv_class_alloc); |
| if (BE (new_equiv_classes == NULL, 0)) |
| return REG_ESPACE; |
| mbcset->equiv_classes = new_equiv_classes; |
| *equiv_class_alloc = new_equiv_class_alloc; |
| } |
| mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; |
| } |
| else |
| #endif /* _LIBC */ |
| { |
| if (BE (strlen ((const char *) name) != 1, 0)) |
| return REG_ECOLLATE; |
| bitset_set (sbcset, *name); |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Helper function for parse_bracket_exp. |
| Build the character class which is represented by NAME. |
| The result are written to MBCSET and SBCSET. |
| CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, |
| is a pointer argument since we may update it. */ |
| |
| static reg_errcode_t |
| #ifdef RE_ENABLE_I18N |
| build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
| re_charset_t *mbcset, int *char_class_alloc, |
| const char *class_name, reg_syntax_t syntax) |
| #else /* not RE_ENABLE_I18N */ |
| build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, |
| const char *class_name, reg_syntax_t syntax) |
| #endif /* not RE_ENABLE_I18N */ |
| { |
| int i; |
| |
| /* In case of REG_ICASE "upper" and "lower" match the both of |
| upper and lower cases. */ |
| if ((syntax & RE_ICASE) |
| && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) |
| class_name = "alpha"; |
| |
| #ifdef RE_ENABLE_I18N |
| /* Check the space of the arrays. */ |
| if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) |
| { |
| /* Not enough, realloc it. */ |
| /* +1 in case of mbcset->nchar_classes is 0. */ |
| int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; |
| /* Use realloc since array is NULL if *alloc == 0. */ |
| wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, |
| new_char_class_alloc); |
| if (BE (new_char_classes == NULL, 0)) |
| return REG_ESPACE; |
| mbcset->char_classes = new_char_classes; |
| *char_class_alloc = new_char_class_alloc; |
| } |
| mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); |
| #endif /* RE_ENABLE_I18N */ |
| |
| #define BUILD_CHARCLASS_LOOP(ctype_func) \ |
| do { \ |
| if (BE (trans != NULL, 0)) \ |
| { \ |
| for (i = 0; i < SBC_MAX; ++i) \ |
| if (ctype_func (i)) \ |
| bitset_set (sbcset, trans[i]); \ |
| } \ |
| else \ |
| { \ |
| for (i = 0; i < SBC_MAX; ++i) \ |
| if (ctype_func (i)) \ |
| bitset_set (sbcset, i); \ |
| } \ |
| } while (0) |
| |
| if (strcmp (class_name, "alnum") == 0) |
| BUILD_CHARCLASS_LOOP (isalnum); |
| else if (strcmp (class_name, "cntrl") == 0) |
| BUILD_CHARCLASS_LOOP (iscntrl); |
| else if (strcmp (class_name, "lower") == 0) |
| BUILD_CHARCLASS_LOOP (islower); |
| else if (strcmp (class_name, "space") == 0) |
| BUILD_CHARCLASS_LOOP (isspace); |
| else if (strcmp (class_name, "alpha") == 0) |
| BUILD_CHARCLASS_LOOP (isalpha); |
| else if (strcmp (class_name, "digit") == 0) |
| BUILD_CHARCLASS_LOOP (isdigit); |
| else if (strcmp (class_name, "print") == 0) |
| BUILD_CHARCLASS_LOOP (isprint); |
| else if (strcmp (class_name, "upper") == 0) |
| BUILD_CHARCLASS_LOOP (isupper); |
| else if (strcmp (class_name, "blank") == 0) |
| #ifndef GAWK |
| BUILD_CHARCLASS_LOOP (isblank); |
| #else |
| /* see comments above */ |
| BUILD_CHARCLASS_LOOP (is_blank); |
| #endif |
| else if (strcmp (class_name, "graph") == 0) |
| BUILD_CHARCLASS_LOOP (isgraph); |
| else if (strcmp (class_name, "punct") == 0) |
| BUILD_CHARCLASS_LOOP (ispunct); |
| else if (strcmp (class_name, "xdigit") == 0) |
| BUILD_CHARCLASS_LOOP (isxdigit); |
| else |
| return REG_ECTYPE; |
| |
| return REG_NOERROR; |
| } |
| |
| static bin_tree_t * |
| build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, |
| const char *class_name, |
| const char *extra, int non_match, |
| reg_errcode_t *err) |
| { |
| re_bitset_ptr_t sbcset; |
| #ifdef RE_ENABLE_I18N |
| re_charset_t *mbcset; |
| int alloc = 0; |
| #endif /* not RE_ENABLE_I18N */ |
| reg_errcode_t ret; |
| re_token_t br_token; |
| bin_tree_t *tree; |
| |
| sbcset = (re_bitset_ptr_t) calloc (1, sizeof (bitset_t)); |
| #ifdef RE_ENABLE_I18N |
| mbcset = (re_charset_t *) calloc (1, sizeof (re_charset_t)); |
| #endif /* RE_ENABLE_I18N */ |
| |
| #ifdef RE_ENABLE_I18N |
| if (BE (sbcset == NULL || mbcset == NULL, 0)) |
| #else /* not RE_ENABLE_I18N */ |
| if (BE (sbcset == NULL, 0)) |
| #endif /* not RE_ENABLE_I18N */ |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| if (non_match) |
| { |
| #ifdef RE_ENABLE_I18N |
| mbcset->non_match = 1; |
| #endif /* not RE_ENABLE_I18N */ |
| } |
| |
| /* We don't care the syntax in this case. */ |
| ret = build_charclass (trans, sbcset, |
| #ifdef RE_ENABLE_I18N |
| mbcset, &alloc, |
| #endif /* RE_ENABLE_I18N */ |
| class_name, 0); |
| |
| if (BE (ret != REG_NOERROR, 0)) |
| { |
| re_free (sbcset); |
| #ifdef RE_ENABLE_I18N |
| free_charset (mbcset); |
| #endif /* RE_ENABLE_I18N */ |
| *err = ret; |
| return NULL; |
| } |
| /* \w match '_' also. */ |
| for (; *extra; extra++) |
| bitset_set (sbcset, *extra); |
| |
| /* If it is non-matching list. */ |
| if (non_match) |
| bitset_not (sbcset); |
| |
| #ifdef RE_ENABLE_I18N |
| /* Ensure only single byte characters are set. */ |
| if (dfa->mb_cur_max > 1) |
| bitset_mask (sbcset, dfa->sb_char); |
| #endif |
| |
| /* Build a tree for simple bracket. */ |
| br_token.type = SIMPLE_BRACKET; |
| br_token.opr.sbcset = sbcset; |
| tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| if (BE (tree == NULL, 0)) |
| goto build_word_op_espace; |
| |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| { |
| bin_tree_t *mbc_tree; |
| /* Build a tree for complex bracket. */ |
| br_token.type = COMPLEX_BRACKET; |
| br_token.opr.mbcset = mbcset; |
| dfa->has_mb_node = 1; |
| mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); |
| if (BE (mbc_tree == NULL, 0)) |
| goto build_word_op_espace; |
| /* Then join them by ALT node. */ |
| tree = create_tree (dfa, tree, mbc_tree, OP_ALT); |
| if (BE (mbc_tree != NULL, 1)) |
| return tree; |
| } |
| else |
| { |
| free_charset (mbcset); |
| return tree; |
| } |
| #else /* not RE_ENABLE_I18N */ |
| return tree; |
| #endif /* not RE_ENABLE_I18N */ |
| |
| build_word_op_espace: |
| re_free (sbcset); |
| #ifdef RE_ENABLE_I18N |
| free_charset (mbcset); |
| #endif /* RE_ENABLE_I18N */ |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| /* This is intended for the expressions like "a{1,3}". |
| Fetch a number from `input', and return the number. |
| Return -1, if the number field is empty like "{,1}". |
| Return -2, if an error has occurred. */ |
| |
| static int |
| fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) |
| { |
| int num = -1; |
| unsigned char c; |
| while (1) |
| { |
| fetch_token (token, input, syntax); |
| c = token->opr.c; |
| if (BE (token->type == END_OF_RE, 0)) |
| return -2; |
| if (token->type == OP_CLOSE_DUP_NUM || c == ',') |
| break; |
| num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) |
| ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); |
| num = (num > RE_DUP_MAX) ? -2 : num; |
| } |
| return num; |
| } |
| |
| #ifdef RE_ENABLE_I18N |
| static void |
| free_charset (re_charset_t *cset) |
| { |
| re_free (cset->mbchars); |
| # ifdef _LIBC |
| re_free (cset->coll_syms); |
| re_free (cset->equiv_classes); |
| re_free (cset->range_starts); |
| re_free (cset->range_ends); |
| # endif |
| re_free (cset->char_classes); |
| re_free (cset); |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* Functions for binary tree operation. */ |
| |
| /* Create a tree node. */ |
| |
| static bin_tree_t * |
| create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
| re_token_type_t type) |
| { |
| re_token_t t; |
| t.type = type; |
| return create_token_tree (dfa, left, right, &t); |
| } |
| |
| static bin_tree_t * |
| create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, |
| const re_token_t *token) |
| { |
| bin_tree_t *tree; |
| if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) |
| { |
| bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); |
| |
| if (storage == NULL) |
| return NULL; |
| storage->next = dfa->str_tree_storage; |
| dfa->str_tree_storage = storage; |
| dfa->str_tree_storage_idx = 0; |
| } |
| tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; |
| |
| tree->parent = NULL; |
| tree->left = left; |
| tree->right = right; |
| tree->token = *token; |
| tree->token.duplicated = 0; |
| tree->token.opt_subexp = 0; |
| tree->first = NULL; |
| tree->next = NULL; |
| tree->node_idx = -1; |
| |
| if (left != NULL) |
| left->parent = tree; |
| if (right != NULL) |
| right->parent = tree; |
| return tree; |
| } |
| |
| /* Mark the tree SRC as an optional subexpression. |
| To be called from preorder or postorder. */ |
| |
| static reg_errcode_t |
| mark_opt_subexp (void *extra, bin_tree_t *node) |
| { |
| int idx = (int) (intptr_t) extra; |
| if (node->token.type == SUBEXP && node->token.opr.idx == idx) |
| node->token.opt_subexp = 1; |
| |
| return REG_NOERROR; |
| } |
| |
| /* Free the allocated memory inside NODE. */ |
| |
| static void |
| free_token (re_token_t *node) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (node->type == COMPLEX_BRACKET && node->duplicated == 0) |
| free_charset (node->opr.mbcset); |
| else |
| #endif /* RE_ENABLE_I18N */ |
| if (node->type == SIMPLE_BRACKET && node->duplicated == 0) |
| re_free (node->opr.sbcset); |
| } |
| |
| /* Worker function for tree walking. Free the allocated memory inside NODE |
| and its children. */ |
| |
| static reg_errcode_t |
| free_tree (void *extra, bin_tree_t *node) |
| { |
| free_token (&node->token); |
| return REG_NOERROR; |
| } |
| |
| |
| /* Duplicate the node SRC, and return new node. This is a preorder |
| visit similar to the one implemented by the generic visitor, but |
| we need more infrastructure to maintain two parallel trees --- so, |
| it's easier to duplicate. */ |
| |
| static bin_tree_t * |
| duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) |
| { |
| const bin_tree_t *node; |
| bin_tree_t *dup_root; |
| bin_tree_t **p_new = &dup_root, *dup_node = root->parent; |
| |
| for (node = root; ; ) |
| { |
| /* Create a new tree and link it back to the current parent. */ |
| *p_new = create_token_tree (dfa, NULL, NULL, &node->token); |
| if (*p_new == NULL) |
| return NULL; |
| (*p_new)->parent = dup_node; |
| (*p_new)->token.duplicated = 1; |
| dup_node = *p_new; |
| |
| /* Go to the left node, or up and to the right. */ |
| if (node->left) |
| { |
| node = node->left; |
| p_new = &dup_node->left; |
| } |
| else |
| { |
| const bin_tree_t *prev = NULL; |
| while (node->right == prev || node->right == NULL) |
| { |
| prev = node; |
| node = node->parent; |
| dup_node = dup_node->parent; |
| if (!node) |
| return dup_root; |
| } |
| node = node->right; |
| p_new = &dup_node->right; |
| } |
| } |
| } |