sort out blockdev_direct_IO variants

Move the call to vmtruncate to get rid of accessive blocks to the callers
in prepearation of the new truncate calling sequence.  This was only done
for DIO_LOCKING filesystems, so the __blockdev_direct_IO_newtrunc variant
was not needed anyway.  Get rid of blockdev_direct_IO_no_locking and
its _newtrunc variant while at it as just opencoding the two additional
paramters is shorted than the name suffix.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff --git a/fs/direct-io.c b/fs/direct-io.c
index a10cb91..51f270b 100644
--- a/fs/direct-io.c
+++ b/fs/direct-io.c
@@ -1136,8 +1136,27 @@
 	return ret;
 }
 
+/*
+ * This is a library function for use by filesystem drivers.
+ *
+ * The locking rules are governed by the flags parameter:
+ *  - if the flags value contains DIO_LOCKING we use a fancy locking
+ *    scheme for dumb filesystems.
+ *    For writes this function is called under i_mutex and returns with
+ *    i_mutex held, for reads, i_mutex is not held on entry, but it is
+ *    taken and dropped again before returning.
+ *    For reads and writes i_alloc_sem is taken in shared mode and released
+ *    on I/O completion (which may happen asynchronously after returning to
+ *    the caller).
+ *
+ *  - if the flags value does NOT contain DIO_LOCKING we don't use any
+ *    internal locking but rather rely on the filesystem to synchronize
+ *    direct I/O reads/writes versus each other and truncate.
+ *    For reads and writes both i_mutex and i_alloc_sem are not held on
+ *    entry and are never taken.
+ */
 ssize_t
-__blockdev_direct_IO_newtrunc(int rw, struct kiocb *iocb, struct inode *inode,
+__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
 	struct block_device *bdev, const struct iovec *iov, loff_t offset, 
 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
 	dio_submit_t submit_io,	int flags)
@@ -1233,57 +1252,4 @@
 out:
 	return retval;
 }
-EXPORT_SYMBOL(__blockdev_direct_IO_newtrunc);
-
-/*
- * This is a library function for use by filesystem drivers.
- *
- * The locking rules are governed by the flags parameter:
- *  - if the flags value contains DIO_LOCKING we use a fancy locking
- *    scheme for dumb filesystems.
- *    For writes this function is called under i_mutex and returns with
- *    i_mutex held, for reads, i_mutex is not held on entry, but it is
- *    taken and dropped again before returning.
- *    For reads and writes i_alloc_sem is taken in shared mode and released
- *    on I/O completion (which may happen asynchronously after returning to
- *    the caller).
- *
- *  - if the flags value does NOT contain DIO_LOCKING we don't use any
- *    internal locking but rather rely on the filesystem to synchronize
- *    direct I/O reads/writes versus each other and truncate.
- *    For reads and writes both i_mutex and i_alloc_sem are not held on
- *    entry and are never taken.
- */
-ssize_t
-__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
-	struct block_device *bdev, const struct iovec *iov, loff_t offset,
-	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
-	dio_submit_t submit_io,	int flags)
-{
-	ssize_t retval;
-
-	retval = __blockdev_direct_IO_newtrunc(rw, iocb, inode, bdev, iov,
-			offset, nr_segs, get_block, end_io, submit_io, flags);
-	/*
-	 * In case of error extending write may have instantiated a few
-	 * blocks outside i_size. Trim these off again for DIO_LOCKING.
-	 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this in
-	 * their own manner. This is a further example of where the old
-	 * truncate sequence is inadequate.
-	 *
-	 * NOTE: filesystems with their own locking have to handle this
-	 * on their own.
-	 */
-	if (flags & DIO_LOCKING) {
-		if (unlikely((rw & WRITE) && retval < 0)) {
-			loff_t isize = i_size_read(inode);
-			loff_t end = offset + iov_length(iov, nr_segs);
-
-			if (end > isize)
-				vmtruncate(inode, isize);
-		}
-	}
-
-	return retval;
-}
 EXPORT_SYMBOL(__blockdev_direct_IO);