Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/i386/crypto/aes-i586-asm.S b/arch/i386/crypto/aes-i586-asm.S
new file mode 100644
index 0000000..7b73c67
--- /dev/null
+++ b/arch/i386/crypto/aes-i586-asm.S
@@ -0,0 +1,376 @@
+// -------------------------------------------------------------------------
+// Copyright (c) 2001, Dr Brian Gladman <                 >, Worcester, UK.
+// All rights reserved.
+//
+// LICENSE TERMS
+//
+// The free distribution and use of this software in both source and binary 
+// form is allowed (with or without changes) provided that:
+//
+//   1. distributions of this source code include the above copyright 
+//      notice, this list of conditions and the following disclaimer//
+//
+//   2. distributions in binary form include the above copyright
+//      notice, this list of conditions and the following disclaimer
+//      in the documentation and/or other associated materials//
+//
+//   3. the copyright holder's name is not used to endorse products 
+//      built using this software without specific written permission.
+//
+//
+// ALTERNATIVELY, provided that this notice is retained in full, this product
+// may be distributed under the terms of the GNU General Public License (GPL),
+// in which case the provisions of the GPL apply INSTEAD OF those given above.
+//
+// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>
+// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
+
+// DISCLAIMER
+//
+// This software is provided 'as is' with no explicit or implied warranties
+// in respect of its properties including, but not limited to, correctness 
+// and fitness for purpose.
+// -------------------------------------------------------------------------
+// Issue Date: 29/07/2002
+
+.file "aes-i586-asm.S"
+.text
+
+// aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
+// aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
+	
+#define tlen 1024   // length of each of 4 'xor' arrays (256 32-bit words)
+
+// offsets to parameters with one register pushed onto stack
+
+#define in_blk    8  // input byte array address parameter
+#define out_blk  12  // output byte array address parameter
+#define ctx      16  // AES context structure
+
+// offsets in context structure
+
+#define ekey     0   // encryption key schedule base address
+#define nrnd   256   // number of rounds
+#define dkey   260   // decryption key schedule base address
+
+// register mapping for encrypt and decrypt subroutines
+
+#define r0  eax
+#define r1  ebx
+#define r2  ecx
+#define r3  edx
+#define r4  esi
+#define r5  edi
+
+#define eaxl  al
+#define eaxh  ah
+#define ebxl  bl
+#define ebxh  bh
+#define ecxl  cl
+#define ecxh  ch
+#define edxl  dl
+#define edxh  dh
+
+#define _h(reg) reg##h
+#define h(reg) _h(reg)
+
+#define _l(reg) reg##l
+#define l(reg) _l(reg)
+
+// This macro takes a 32-bit word representing a column and uses
+// each of its four bytes to index into four tables of 256 32-bit
+// words to obtain values that are then xored into the appropriate
+// output registers r0, r1, r4 or r5.  
+
+// Parameters:
+// table table base address
+//   %1  out_state[0]
+//   %2  out_state[1]
+//   %3  out_state[2]
+//   %4  out_state[3]
+//   idx input register for the round (destroyed)
+//   tmp scratch register for the round
+// sched key schedule
+
+#define do_col(table, a1,a2,a3,a4, idx, tmp)	\
+	movzx   %l(idx),%tmp;			\
+	xor     table(,%tmp,4),%a1;		\
+	movzx   %h(idx),%tmp;			\
+	shr     $16,%idx;			\
+	xor     table+tlen(,%tmp,4),%a2;	\
+	movzx   %l(idx),%tmp;			\
+	movzx   %h(idx),%idx;			\
+	xor     table+2*tlen(,%tmp,4),%a3;	\
+	xor     table+3*tlen(,%idx,4),%a4;
+
+// initialise output registers from the key schedule
+// NB1: original value of a3 is in idx on exit
+// NB2: original values of a1,a2,a4 aren't used
+#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \
+	mov     0 sched,%a1;			\
+	movzx   %l(idx),%tmp;			\
+	mov     12 sched,%a2;			\
+	xor     table(,%tmp,4),%a1;		\
+	mov     4 sched,%a4;			\
+	movzx   %h(idx),%tmp;			\
+	shr     $16,%idx;			\
+	xor     table+tlen(,%tmp,4),%a2;	\
+	movzx   %l(idx),%tmp;			\
+	movzx   %h(idx),%idx;			\
+	xor     table+3*tlen(,%idx,4),%a4;	\
+	mov     %a3,%idx;			\
+	mov     8 sched,%a3;			\
+	xor     table+2*tlen(,%tmp,4),%a3;
+
+// initialise output registers from the key schedule
+// NB1: original value of a3 is in idx on exit
+// NB2: original values of a1,a2,a4 aren't used
+#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \
+	mov     0 sched,%a1;			\
+	movzx   %l(idx),%tmp;			\
+	mov     4 sched,%a2;			\
+	xor     table(,%tmp,4),%a1;		\
+	mov     12 sched,%a4;			\
+	movzx   %h(idx),%tmp;			\
+	shr     $16,%idx;			\
+	xor     table+tlen(,%tmp,4),%a2;	\
+	movzx   %l(idx),%tmp;			\
+	movzx   %h(idx),%idx;			\
+	xor     table+3*tlen(,%idx,4),%a4;	\
+	mov     %a3,%idx;			\
+	mov     8 sched,%a3;			\
+	xor     table+2*tlen(,%tmp,4),%a3;
+
+
+// original Gladman had conditional saves to MMX regs.
+#define save(a1, a2)		\
+	mov     %a2,4*a1(%esp)
+
+#define restore(a1, a2)		\
+	mov     4*a2(%esp),%a1
+
+// These macros perform a forward encryption cycle. They are entered with
+// the first previous round column values in r0,r1,r4,r5 and
+// exit with the final values in the same registers, using stack
+// for temporary storage.
+
+// round column values
+// on entry: r0,r1,r4,r5
+// on exit:  r2,r1,r4,r5
+#define fwd_rnd1(arg, table)						\
+	save   (0,r1);							\
+	save   (1,r5);							\
+									\
+	/* compute new column values */					\
+	do_fcol(table, r2,r5,r4,r1, r0,r3, arg);	/* idx=r0 */	\
+	do_col (table, r4,r1,r2,r5, r0,r3);		/* idx=r4 */	\
+	restore(r0,0);							\
+	do_col (table, r1,r2,r5,r4, r0,r3);		/* idx=r1 */	\
+	restore(r0,1);							\
+	do_col (table, r5,r4,r1,r2, r0,r3);		/* idx=r5 */
+
+// round column values
+// on entry: r2,r1,r4,r5
+// on exit:  r0,r1,r4,r5
+#define fwd_rnd2(arg, table)						\
+	save   (0,r1);							\
+	save   (1,r5);							\
+									\
+	/* compute new column values */					\
+	do_fcol(table, r0,r5,r4,r1, r2,r3, arg);	/* idx=r2 */	\
+	do_col (table, r4,r1,r0,r5, r2,r3);		/* idx=r4 */	\
+	restore(r2,0);							\
+	do_col (table, r1,r0,r5,r4, r2,r3);		/* idx=r1 */	\
+	restore(r2,1);							\
+	do_col (table, r5,r4,r1,r0, r2,r3);		/* idx=r5 */
+
+// These macros performs an inverse encryption cycle. They are entered with
+// the first previous round column values in r0,r1,r4,r5 and
+// exit with the final values in the same registers, using stack
+// for temporary storage
+
+// round column values
+// on entry: r0,r1,r4,r5
+// on exit:  r2,r1,r4,r5
+#define inv_rnd1(arg, table)						\
+	save    (0,r1);							\
+	save    (1,r5);							\
+									\
+	/* compute new column values */					\
+	do_icol(table, r2,r1,r4,r5, r0,r3, arg);	/* idx=r0 */	\
+	do_col (table, r4,r5,r2,r1, r0,r3);		/* idx=r4 */	\
+	restore(r0,0);							\
+	do_col (table, r1,r4,r5,r2, r0,r3);		/* idx=r1 */	\
+	restore(r0,1);							\
+	do_col (table, r5,r2,r1,r4, r0,r3);		/* idx=r5 */
+
+// round column values
+// on entry: r2,r1,r4,r5
+// on exit:  r0,r1,r4,r5
+#define inv_rnd2(arg, table)						\
+	save    (0,r1);							\
+	save    (1,r5);							\
+									\
+	/* compute new column values */					\
+	do_icol(table, r0,r1,r4,r5, r2,r3, arg);	/* idx=r2 */	\
+	do_col (table, r4,r5,r0,r1, r2,r3);		/* idx=r4 */	\
+	restore(r2,0);							\
+	do_col (table, r1,r4,r5,r0, r2,r3);		/* idx=r1 */	\
+	restore(r2,1);							\
+	do_col (table, r5,r0,r1,r4, r2,r3);		/* idx=r5 */
+
+// AES (Rijndael) Encryption Subroutine
+
+.global  aes_enc_blk
+
+.extern  ft_tab
+.extern  fl_tab
+
+.align 4
+
+aes_enc_blk:
+	push    %ebp
+	mov     ctx(%esp),%ebp      // pointer to context
+
+// CAUTION: the order and the values used in these assigns 
+// rely on the register mappings
+
+1:	push    %ebx
+	mov     in_blk+4(%esp),%r2
+	push    %esi
+	mov     nrnd(%ebp),%r3   // number of rounds
+	push    %edi
+#if ekey != 0
+	lea     ekey(%ebp),%ebp  // key pointer
+#endif
+
+// input four columns and xor in first round key
+
+	mov     (%r2),%r0
+	mov     4(%r2),%r1
+	mov     8(%r2),%r4
+	mov     12(%r2),%r5
+	xor     (%ebp),%r0
+	xor     4(%ebp),%r1
+	xor     8(%ebp),%r4
+	xor     12(%ebp),%r5
+
+	sub     $8,%esp           // space for register saves on stack
+	add     $16,%ebp          // increment to next round key
+	sub     $10,%r3          
+	je      4f              // 10 rounds for 128-bit key
+	add     $32,%ebp
+	sub     $2,%r3
+	je      3f              // 12 rounds for 128-bit key
+	add     $32,%ebp
+
+2:	fwd_rnd1( -64(%ebp) ,ft_tab)	// 14 rounds for 128-bit key
+	fwd_rnd2( -48(%ebp) ,ft_tab)
+3:	fwd_rnd1( -32(%ebp) ,ft_tab)	// 12 rounds for 128-bit key
+	fwd_rnd2( -16(%ebp) ,ft_tab)
+4:	fwd_rnd1(    (%ebp) ,ft_tab)	// 10 rounds for 128-bit key
+	fwd_rnd2( +16(%ebp) ,ft_tab)
+	fwd_rnd1( +32(%ebp) ,ft_tab)
+	fwd_rnd2( +48(%ebp) ,ft_tab)
+	fwd_rnd1( +64(%ebp) ,ft_tab)
+	fwd_rnd2( +80(%ebp) ,ft_tab)
+	fwd_rnd1( +96(%ebp) ,ft_tab)
+	fwd_rnd2(+112(%ebp) ,ft_tab)
+	fwd_rnd1(+128(%ebp) ,ft_tab)
+	fwd_rnd2(+144(%ebp) ,fl_tab)	// last round uses a different table
+
+// move final values to the output array.  CAUTION: the 
+// order of these assigns rely on the register mappings
+
+	add     $8,%esp
+	mov     out_blk+12(%esp),%ebp
+	mov     %r5,12(%ebp)
+	pop     %edi
+	mov     %r4,8(%ebp)
+	pop     %esi
+	mov     %r1,4(%ebp)
+	pop     %ebx
+	mov     %r0,(%ebp)
+	pop     %ebp
+	mov     $1,%eax
+	ret
+
+// AES (Rijndael) Decryption Subroutine
+
+.global  aes_dec_blk
+
+.extern  it_tab
+.extern  il_tab
+
+.align 4
+
+aes_dec_blk:
+	push    %ebp
+	mov     ctx(%esp),%ebp       // pointer to context
+
+// CAUTION: the order and the values used in these assigns 
+// rely on the register mappings
+
+1:	push    %ebx
+	mov     in_blk+4(%esp),%r2
+	push    %esi
+	mov     nrnd(%ebp),%r3   // number of rounds
+	push    %edi
+#if dkey != 0
+	lea     dkey(%ebp),%ebp  // key pointer
+#endif
+	mov     %r3,%r0
+	shl     $4,%r0
+	add     %r0,%ebp
+	
+// input four columns and xor in first round key
+
+	mov     (%r2),%r0
+	mov     4(%r2),%r1
+	mov     8(%r2),%r4
+	mov     12(%r2),%r5
+	xor     (%ebp),%r0
+	xor     4(%ebp),%r1
+	xor     8(%ebp),%r4
+	xor     12(%ebp),%r5
+
+	sub     $8,%esp         // space for register saves on stack
+	sub     $16,%ebp        // increment to next round key
+	sub     $10,%r3          
+	je      4f              // 10 rounds for 128-bit key
+	sub     $32,%ebp
+	sub     $2,%r3
+	je      3f              // 12 rounds for 128-bit key
+	sub     $32,%ebp
+
+2:	inv_rnd1( +64(%ebp), it_tab)	// 14 rounds for 128-bit key
+	inv_rnd2( +48(%ebp), it_tab)
+3:	inv_rnd1( +32(%ebp), it_tab)	// 12 rounds for 128-bit key
+	inv_rnd2( +16(%ebp), it_tab)
+4:	inv_rnd1(    (%ebp), it_tab)	// 10 rounds for 128-bit key
+	inv_rnd2( -16(%ebp), it_tab)
+	inv_rnd1( -32(%ebp), it_tab)
+	inv_rnd2( -48(%ebp), it_tab)
+	inv_rnd1( -64(%ebp), it_tab)
+	inv_rnd2( -80(%ebp), it_tab)
+	inv_rnd1( -96(%ebp), it_tab)
+	inv_rnd2(-112(%ebp), it_tab)
+	inv_rnd1(-128(%ebp), it_tab)
+	inv_rnd2(-144(%ebp), il_tab)	// last round uses a different table
+
+// move final values to the output array.  CAUTION: the 
+// order of these assigns rely on the register mappings
+
+	add     $8,%esp
+	mov     out_blk+12(%esp),%ebp
+	mov     %r5,12(%ebp)
+	pop     %edi
+	mov     %r4,8(%ebp)
+	pop     %esi
+	mov     %r1,4(%ebp)
+	pop     %ebx
+	mov     %r0,(%ebp)
+	pop     %ebp
+	mov     $1,%eax
+	ret
+