Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/arm/vfp/vfpsingle.c b/arch/arm/vfp/vfpsingle.c
new file mode 100644
index 0000000..6849fe3
--- /dev/null
+++ b/arch/arm/vfp/vfpsingle.c
@@ -0,0 +1,1224 @@
+/*
+ *  linux/arch/arm/vfp/vfpsingle.c
+ *
+ * This code is derived in part from John R. Housers softfloat library, which
+ * carries the following notice:
+ *
+ * ===========================================================================
+ * This C source file is part of the SoftFloat IEC/IEEE Floating-point
+ * Arithmetic Package, Release 2.
+ *
+ * Written by John R. Hauser.  This work was made possible in part by the
+ * International Computer Science Institute, located at Suite 600, 1947 Center
+ * Street, Berkeley, California 94704.  Funding was partially provided by the
+ * National Science Foundation under grant MIP-9311980.  The original version
+ * of this code was written as part of a project to build a fixed-point vector
+ * processor in collaboration with the University of California at Berkeley,
+ * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
+ * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+ * arithmetic/softfloat.html'.
+ *
+ * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
+ * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+ * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
+ * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+ * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+ *
+ * Derivative works are acceptable, even for commercial purposes, so long as
+ * (1) they include prominent notice that the work is derivative, and (2) they
+ * include prominent notice akin to these three paragraphs for those parts of
+ * this code that are retained.
+ * ===========================================================================
+ */
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <asm/ptrace.h>
+#include <asm/vfp.h>
+
+#include "vfpinstr.h"
+#include "vfp.h"
+
+static struct vfp_single vfp_single_default_qnan = {
+	.exponent	= 255,
+	.sign		= 0,
+	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
+};
+
+static void vfp_single_dump(const char *str, struct vfp_single *s)
+{
+	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
+		 str, s->sign != 0, s->exponent, s->significand);
+}
+
+static void vfp_single_normalise_denormal(struct vfp_single *vs)
+{
+	int bits = 31 - fls(vs->significand);
+
+	vfp_single_dump("normalise_denormal: in", vs);
+
+	if (bits) {
+		vs->exponent -= bits - 1;
+		vs->significand <<= bits;
+	}
+
+	vfp_single_dump("normalise_denormal: out", vs);
+}
+
+#ifndef DEBUG
+#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
+u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
+#else
+u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
+#endif
+{
+	u32 significand, incr, rmode;
+	int exponent, shift, underflow;
+
+	vfp_single_dump("pack: in", vs);
+
+	/*
+	 * Infinities and NaNs are a special case.
+	 */
+	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
+		goto pack;
+
+	/*
+	 * Special-case zero.
+	 */
+	if (vs->significand == 0) {
+		vs->exponent = 0;
+		goto pack;
+	}
+
+	exponent = vs->exponent;
+	significand = vs->significand;
+
+	/*
+	 * Normalise first.  Note that we shift the significand up to
+	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
+	 * significant bit.
+	 */
+	shift = 32 - fls(significand);
+	if (shift < 32 && shift) {
+		exponent -= shift;
+		significand <<= shift;
+	}
+
+#ifdef DEBUG
+	vs->exponent = exponent;
+	vs->significand = significand;
+	vfp_single_dump("pack: normalised", vs);
+#endif
+
+	/*
+	 * Tiny number?
+	 */
+	underflow = exponent < 0;
+	if (underflow) {
+		significand = vfp_shiftright32jamming(significand, -exponent);
+		exponent = 0;
+#ifdef DEBUG
+		vs->exponent = exponent;
+		vs->significand = significand;
+		vfp_single_dump("pack: tiny number", vs);
+#endif
+		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
+			underflow = 0;
+	}
+
+	/*
+	 * Select rounding increment.
+	 */
+	incr = 0;
+	rmode = fpscr & FPSCR_RMODE_MASK;
+
+	if (rmode == FPSCR_ROUND_NEAREST) {
+		incr = 1 << VFP_SINGLE_LOW_BITS;
+		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
+			incr -= 1;
+	} else if (rmode == FPSCR_ROUND_TOZERO) {
+		incr = 0;
+	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
+		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
+
+	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
+
+	/*
+	 * Is our rounding going to overflow?
+	 */
+	if ((significand + incr) < significand) {
+		exponent += 1;
+		significand = (significand >> 1) | (significand & 1);
+		incr >>= 1;
+#ifdef DEBUG
+		vs->exponent = exponent;
+		vs->significand = significand;
+		vfp_single_dump("pack: overflow", vs);
+#endif
+	}
+
+	/*
+	 * If any of the low bits (which will be shifted out of the
+	 * number) are non-zero, the result is inexact.
+	 */
+	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
+		exceptions |= FPSCR_IXC;
+
+	/*
+	 * Do our rounding.
+	 */
+	significand += incr;
+
+	/*
+	 * Infinity?
+	 */
+	if (exponent >= 254) {
+		exceptions |= FPSCR_OFC | FPSCR_IXC;
+		if (incr == 0) {
+			vs->exponent = 253;
+			vs->significand = 0x7fffffff;
+		} else {
+			vs->exponent = 255;		/* infinity */
+			vs->significand = 0;
+		}
+	} else {
+		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
+			exponent = 0;
+		if (exponent || significand > 0x80000000)
+			underflow = 0;
+		if (underflow)
+			exceptions |= FPSCR_UFC;
+		vs->exponent = exponent;
+		vs->significand = significand >> 1;
+	}
+
+ pack:
+	vfp_single_dump("pack: final", vs);
+	{
+		s32 d = vfp_single_pack(vs);
+		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
+			 sd, d, exceptions);
+		vfp_put_float(sd, d);
+	}
+
+	return exceptions & ~VFP_NAN_FLAG;
+}
+
+/*
+ * Propagate the NaN, setting exceptions if it is signalling.
+ * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
+ */
+static u32
+vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
+		  struct vfp_single *vsm, u32 fpscr)
+{
+	struct vfp_single *nan;
+	int tn, tm = 0;
+
+	tn = vfp_single_type(vsn);
+
+	if (vsm)
+		tm = vfp_single_type(vsm);
+
+	if (fpscr & FPSCR_DEFAULT_NAN)
+		/*
+		 * Default NaN mode - always returns a quiet NaN
+		 */
+		nan = &vfp_single_default_qnan;
+	else {
+		/*
+		 * Contemporary mode - select the first signalling
+		 * NAN, or if neither are signalling, the first
+		 * quiet NAN.
+		 */
+		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
+			nan = vsn;
+		else
+			nan = vsm;
+		/*
+		 * Make the NaN quiet.
+		 */
+		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
+	}
+
+	*vsd = *nan;
+
+	/*
+	 * If one was a signalling NAN, raise invalid operation.
+	 */
+	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
+}
+
+
+/*
+ * Extended operations
+ */
+static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
+{
+	vfp_put_float(sd, vfp_single_packed_abs(m));
+	return 0;
+}
+
+static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
+{
+	vfp_put_float(sd, m);
+	return 0;
+}
+
+static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
+{
+	vfp_put_float(sd, vfp_single_packed_negate(m));
+	return 0;
+}
+
+static const u16 sqrt_oddadjust[] = {
+	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
+	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
+};
+
+static const u16 sqrt_evenadjust[] = {
+	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
+	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
+};
+
+u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
+{
+	int index;
+	u32 z, a;
+
+	if ((significand & 0xc0000000) != 0x40000000) {
+		printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
+	}
+
+	a = significand << 1;
+	index = (a >> 27) & 15;
+	if (exponent & 1) {
+		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
+		z = ((a / z) << 14) + (z << 15);
+		a >>= 1;
+	} else {
+		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
+		z = a / z + z;
+		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
+		if (z <= a)
+			return (s32)a >> 1;
+	}
+	return (u32)(((u64)a << 31) / z) + (z >> 1);
+}
+
+static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vsm, vsd;
+	int ret, tm;
+
+	vfp_single_unpack(&vsm, m);
+	tm = vfp_single_type(&vsm);
+	if (tm & (VFP_NAN|VFP_INFINITY)) {
+		struct vfp_single *vsp = &vsd;
+
+		if (tm & VFP_NAN)
+			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
+		else if (vsm.sign == 0) {
+ sqrt_copy:
+			vsp = &vsm;
+			ret = 0;
+		} else {
+ sqrt_invalid:
+			vsp = &vfp_single_default_qnan;
+			ret = FPSCR_IOC;
+		}
+		vfp_put_float(sd, vfp_single_pack(vsp));
+		return ret;
+	}
+
+	/*
+	 * sqrt(+/- 0) == +/- 0
+	 */
+	if (tm & VFP_ZERO)
+		goto sqrt_copy;
+
+	/*
+	 * Normalise a denormalised number
+	 */
+	if (tm & VFP_DENORMAL)
+		vfp_single_normalise_denormal(&vsm);
+
+	/*
+	 * sqrt(<0) = invalid
+	 */
+	if (vsm.sign)
+		goto sqrt_invalid;
+
+	vfp_single_dump("sqrt", &vsm);
+
+	/*
+	 * Estimate the square root.
+	 */
+	vsd.sign = 0;
+	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
+	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
+
+	vfp_single_dump("sqrt estimate", &vsd);
+
+	/*
+	 * And now adjust.
+	 */
+	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
+		if (vsd.significand < 2) {
+			vsd.significand = 0xffffffff;
+		} else {
+			u64 term;
+			s64 rem;
+			vsm.significand <<= !(vsm.exponent & 1);
+			term = (u64)vsd.significand * vsd.significand;
+			rem = ((u64)vsm.significand << 32) - term;
+
+			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
+
+			while (rem < 0) {
+				vsd.significand -= 1;
+				rem += ((u64)vsd.significand << 1) | 1;
+			}
+			vsd.significand |= rem != 0;
+		}
+	}
+	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
+
+	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
+}
+
+/*
+ * Equal	:= ZC
+ * Less than	:= N
+ * Greater than	:= C
+ * Unordered	:= CV
+ */
+static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
+{
+	s32 d;
+	u32 ret = 0;
+
+	d = vfp_get_float(sd);
+	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
+		ret |= FPSCR_C | FPSCR_V;
+		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
+			/*
+			 * Signalling NaN, or signalling on quiet NaN
+			 */
+			ret |= FPSCR_IOC;
+	}
+
+	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
+		ret |= FPSCR_C | FPSCR_V;
+		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
+			/*
+			 * Signalling NaN, or signalling on quiet NaN
+			 */
+			ret |= FPSCR_IOC;
+	}
+
+	if (ret == 0) {
+		if (d == m || vfp_single_packed_abs(d | m) == 0) {
+			/*
+			 * equal
+			 */
+			ret |= FPSCR_Z | FPSCR_C;
+		} else if (vfp_single_packed_sign(d ^ m)) {
+			/*
+			 * different signs
+			 */
+			if (vfp_single_packed_sign(d))
+				/*
+				 * d is negative, so d < m
+				 */
+				ret |= FPSCR_N;
+			else
+				/*
+				 * d is positive, so d > m
+				 */
+				ret |= FPSCR_C;
+		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
+			/*
+			 * d < m
+			 */
+			ret |= FPSCR_N;
+		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
+			/*
+			 * d > m
+			 */
+			ret |= FPSCR_C;
+		}
+	}
+	return ret;
+}
+
+static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_compare(sd, 0, m, fpscr);
+}
+
+static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_compare(sd, 1, m, fpscr);
+}
+
+static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_compare(sd, 0, 0, fpscr);
+}
+
+static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_compare(sd, 1, 0, fpscr);
+}
+
+static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vsm;
+	struct vfp_double vdd;
+	int tm;
+	u32 exceptions = 0;
+
+	vfp_single_unpack(&vsm, m);
+
+	tm = vfp_single_type(&vsm);
+
+	/*
+	 * If we have a signalling NaN, signal invalid operation.
+	 */
+	if (tm == VFP_SNAN)
+		exceptions = FPSCR_IOC;
+
+	if (tm & VFP_DENORMAL)
+		vfp_single_normalise_denormal(&vsm);
+
+	vdd.sign = vsm.sign;
+	vdd.significand = (u64)vsm.significand << 32;
+
+	/*
+	 * If we have an infinity or NaN, the exponent must be 2047.
+	 */
+	if (tm & (VFP_INFINITY|VFP_NAN)) {
+		vdd.exponent = 2047;
+		if (tm & VFP_NAN)
+			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
+		goto pack_nan;
+	} else if (tm & VFP_ZERO)
+		vdd.exponent = 0;
+	else
+		vdd.exponent = vsm.exponent + (1023 - 127);
+
+	/*
+	 * Technically, if bit 0 of dd is set, this is an invalid
+	 * instruction.  However, we ignore this for efficiency.
+	 */
+	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
+
+ pack_nan:
+	vfp_put_double(dd, vfp_double_pack(&vdd));
+	return exceptions;
+}
+
+static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vs;
+
+	vs.sign = 0;
+	vs.exponent = 127 + 31 - 1;
+	vs.significand = (u32)m;
+
+	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
+}
+
+static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vs;
+
+	vs.sign = (m & 0x80000000) >> 16;
+	vs.exponent = 127 + 31 - 1;
+	vs.significand = vs.sign ? -m : m;
+
+	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
+}
+
+static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vsm;
+	u32 d, exceptions = 0;
+	int rmode = fpscr & FPSCR_RMODE_MASK;
+	int tm;
+
+	vfp_single_unpack(&vsm, m);
+	vfp_single_dump("VSM", &vsm);
+
+	/*
+	 * Do we have a denormalised number?
+	 */
+	tm = vfp_single_type(&vsm);
+	if (tm & VFP_DENORMAL)
+		exceptions |= FPSCR_IDC;
+
+	if (tm & VFP_NAN)
+		vsm.sign = 0;
+
+	if (vsm.exponent >= 127 + 32) {
+		d = vsm.sign ? 0 : 0xffffffff;
+		exceptions = FPSCR_IOC;
+	} else if (vsm.exponent >= 127 - 1) {
+		int shift = 127 + 31 - vsm.exponent;
+		u32 rem, incr = 0;
+
+		/*
+		 * 2^0 <= m < 2^32-2^8
+		 */
+		d = (vsm.significand << 1) >> shift;
+		rem = vsm.significand << (33 - shift);
+
+		if (rmode == FPSCR_ROUND_NEAREST) {
+			incr = 0x80000000;
+			if ((d & 1) == 0)
+				incr -= 1;
+		} else if (rmode == FPSCR_ROUND_TOZERO) {
+			incr = 0;
+		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
+			incr = ~0;
+		}
+
+		if ((rem + incr) < rem) {
+			if (d < 0xffffffff)
+				d += 1;
+			else
+				exceptions |= FPSCR_IOC;
+		}
+
+		if (d && vsm.sign) {
+			d = 0;
+			exceptions |= FPSCR_IOC;
+		} else if (rem)
+			exceptions |= FPSCR_IXC;
+	} else {
+		d = 0;
+		if (vsm.exponent | vsm.significand) {
+			exceptions |= FPSCR_IXC;
+			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
+				d = 1;
+			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
+				d = 0;
+				exceptions |= FPSCR_IOC;
+			}
+		}
+	}
+
+	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+	vfp_put_float(sd, d);
+
+	return exceptions;
+}
+
+static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
+}
+
+static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
+{
+	struct vfp_single vsm;
+	u32 d, exceptions = 0;
+	int rmode = fpscr & FPSCR_RMODE_MASK;
+
+	vfp_single_unpack(&vsm, m);
+	vfp_single_dump("VSM", &vsm);
+
+	/*
+	 * Do we have a denormalised number?
+	 */
+	if (vfp_single_type(&vsm) & VFP_DENORMAL)
+		exceptions |= FPSCR_IDC;
+
+	if (vsm.exponent >= 127 + 32) {
+		/*
+		 * m >= 2^31-2^7: invalid
+		 */
+		d = 0x7fffffff;
+		if (vsm.sign)
+			d = ~d;
+		exceptions |= FPSCR_IOC;
+	} else if (vsm.exponent >= 127 - 1) {
+		int shift = 127 + 31 - vsm.exponent;
+		u32 rem, incr = 0;
+
+		/* 2^0 <= m <= 2^31-2^7 */
+		d = (vsm.significand << 1) >> shift;
+		rem = vsm.significand << (33 - shift);
+
+		if (rmode == FPSCR_ROUND_NEAREST) {
+			incr = 0x80000000;
+			if ((d & 1) == 0)
+				incr -= 1;
+		} else if (rmode == FPSCR_ROUND_TOZERO) {
+			incr = 0;
+		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
+			incr = ~0;
+		}
+
+		if ((rem + incr) < rem && d < 0xffffffff)
+			d += 1;
+		if (d > 0x7fffffff + (vsm.sign != 0)) {
+			d = 0x7fffffff + (vsm.sign != 0);
+			exceptions |= FPSCR_IOC;
+		} else if (rem)
+			exceptions |= FPSCR_IXC;
+
+		if (vsm.sign)
+			d = -d;
+	} else {
+		d = 0;
+		if (vsm.exponent | vsm.significand) {
+			exceptions |= FPSCR_IXC;
+			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
+				d = 1;
+			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
+				d = -1;
+		}
+	}
+
+	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
+
+	vfp_put_float(sd, (s32)d);
+
+	return exceptions;
+}
+
+static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
+{
+	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
+}
+
+static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
+	[FEXT_TO_IDX(FEXT_FCPY)]	= vfp_single_fcpy,
+	[FEXT_TO_IDX(FEXT_FABS)]	= vfp_single_fabs,
+	[FEXT_TO_IDX(FEXT_FNEG)]	= vfp_single_fneg,
+	[FEXT_TO_IDX(FEXT_FSQRT)]	= vfp_single_fsqrt,
+	[FEXT_TO_IDX(FEXT_FCMP)]	= vfp_single_fcmp,
+	[FEXT_TO_IDX(FEXT_FCMPE)]	= vfp_single_fcmpe,
+	[FEXT_TO_IDX(FEXT_FCMPZ)]	= vfp_single_fcmpz,
+	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= vfp_single_fcmpez,
+	[FEXT_TO_IDX(FEXT_FCVT)]	= vfp_single_fcvtd,
+	[FEXT_TO_IDX(FEXT_FUITO)]	= vfp_single_fuito,
+	[FEXT_TO_IDX(FEXT_FSITO)]	= vfp_single_fsito,
+	[FEXT_TO_IDX(FEXT_FTOUI)]	= vfp_single_ftoui,
+	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= vfp_single_ftouiz,
+	[FEXT_TO_IDX(FEXT_FTOSI)]	= vfp_single_ftosi,
+	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= vfp_single_ftosiz,
+};
+
+
+
+
+
+static u32
+vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
+			  struct vfp_single *vsm, u32 fpscr)
+{
+	struct vfp_single *vsp;
+	u32 exceptions = 0;
+	int tn, tm;
+
+	tn = vfp_single_type(vsn);
+	tm = vfp_single_type(vsm);
+
+	if (tn & tm & VFP_INFINITY) {
+		/*
+		 * Two infinities.  Are they different signs?
+		 */
+		if (vsn->sign ^ vsm->sign) {
+			/*
+			 * different signs -> invalid
+			 */
+			exceptions = FPSCR_IOC;
+			vsp = &vfp_single_default_qnan;
+		} else {
+			/*
+			 * same signs -> valid
+			 */
+			vsp = vsn;
+		}
+	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
+		/*
+		 * One infinity and one number -> infinity
+		 */
+		vsp = vsn;
+	} else {
+		/*
+		 * 'n' is a NaN of some type
+		 */
+		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
+	}
+	*vsd = *vsp;
+	return exceptions;
+}
+
+static u32
+vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
+	       struct vfp_single *vsm, u32 fpscr)
+{
+	u32 exp_diff, m_sig;
+
+	if (vsn->significand & 0x80000000 ||
+	    vsm->significand & 0x80000000) {
+		pr_info("VFP: bad FP values in %s\n", __func__);
+		vfp_single_dump("VSN", vsn);
+		vfp_single_dump("VSM", vsm);
+	}
+
+	/*
+	 * Ensure that 'n' is the largest magnitude number.  Note that
+	 * if 'n' and 'm' have equal exponents, we do not swap them.
+	 * This ensures that NaN propagation works correctly.
+	 */
+	if (vsn->exponent < vsm->exponent) {
+		struct vfp_single *t = vsn;
+		vsn = vsm;
+		vsm = t;
+	}
+
+	/*
+	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
+	 * infinity or a NaN here.
+	 */
+	if (vsn->exponent == 255)
+		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
+
+	/*
+	 * We have two proper numbers, where 'vsn' is the larger magnitude.
+	 *
+	 * Copy 'n' to 'd' before doing the arithmetic.
+	 */
+	*vsd = *vsn;
+
+	/*
+	 * Align both numbers.
+	 */
+	exp_diff = vsn->exponent - vsm->exponent;
+	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
+
+	/*
+	 * If the signs are different, we are really subtracting.
+	 */
+	if (vsn->sign ^ vsm->sign) {
+		m_sig = vsn->significand - m_sig;
+		if ((s32)m_sig < 0) {
+			vsd->sign = vfp_sign_negate(vsd->sign);
+			m_sig = -m_sig;
+		} else if (m_sig == 0) {
+			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
+				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
+		}
+	} else {
+		m_sig = vsn->significand + m_sig;
+	}
+	vsd->significand = m_sig;
+
+	return 0;
+}
+
+static u32
+vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
+{
+	vfp_single_dump("VSN", vsn);
+	vfp_single_dump("VSM", vsm);
+
+	/*
+	 * Ensure that 'n' is the largest magnitude number.  Note that
+	 * if 'n' and 'm' have equal exponents, we do not swap them.
+	 * This ensures that NaN propagation works correctly.
+	 */
+	if (vsn->exponent < vsm->exponent) {
+		struct vfp_single *t = vsn;
+		vsn = vsm;
+		vsm = t;
+		pr_debug("VFP: swapping M <-> N\n");
+	}
+
+	vsd->sign = vsn->sign ^ vsm->sign;
+
+	/*
+	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
+	 */
+	if (vsn->exponent == 255) {
+		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
+			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
+		if ((vsm->exponent | vsm->significand) == 0) {
+			*vsd = vfp_single_default_qnan;
+			return FPSCR_IOC;
+		}
+		vsd->exponent = vsn->exponent;
+		vsd->significand = 0;
+		return 0;
+	}
+
+	/*
+	 * If 'm' is zero, the result is always zero.  In this case,
+	 * 'n' may be zero or a number, but it doesn't matter which.
+	 */
+	if ((vsm->exponent | vsm->significand) == 0) {
+		vsd->exponent = 0;
+		vsd->significand = 0;
+		return 0;
+	}
+
+	/*
+	 * We add 2 to the destination exponent for the same reason as
+	 * the addition case - though this time we have +1 from each
+	 * input operand.
+	 */
+	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
+	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
+
+	vfp_single_dump("VSD", vsd);
+	return 0;
+}
+
+#define NEG_MULTIPLY	(1 << 0)
+#define NEG_SUBTRACT	(1 << 1)
+
+static u32
+vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
+{
+	struct vfp_single vsd, vsp, vsn, vsm;
+	u32 exceptions;
+	s32 v;
+
+	v = vfp_get_float(sn);
+	pr_debug("VFP: s%u = %08x\n", sn, v);
+	vfp_single_unpack(&vsn, v);
+	if (vsn.exponent == 0 && vsn.significand)
+		vfp_single_normalise_denormal(&vsn);
+
+	vfp_single_unpack(&vsm, m);
+	if (vsm.exponent == 0 && vsm.significand)
+		vfp_single_normalise_denormal(&vsm);
+
+	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
+	if (negate & NEG_MULTIPLY)
+		vsp.sign = vfp_sign_negate(vsp.sign);
+
+	v = vfp_get_float(sd);
+	pr_debug("VFP: s%u = %08x\n", sd, v);
+	vfp_single_unpack(&vsn, v);
+	if (negate & NEG_SUBTRACT)
+		vsn.sign = vfp_sign_negate(vsn.sign);
+
+	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
+
+	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
+}
+
+/*
+ * Standard operations
+ */
+
+/*
+ * sd = sd + (sn * sm)
+ */
+static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
+{
+	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
+}
+
+/*
+ * sd = sd - (sn * sm)
+ */
+static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
+{
+	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
+}
+
+/*
+ * sd = -sd + (sn * sm)
+ */
+static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
+{
+	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
+}
+
+/*
+ * sd = -sd - (sn * sm)
+ */
+static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
+{
+	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
+}
+
+/*
+ * sd = sn * sm
+ */
+static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
+{
+	struct vfp_single vsd, vsn, vsm;
+	u32 exceptions;
+	s32 n = vfp_get_float(sn);
+
+	pr_debug("VFP: s%u = %08x\n", sn, n);
+
+	vfp_single_unpack(&vsn, n);
+	if (vsn.exponent == 0 && vsn.significand)
+		vfp_single_normalise_denormal(&vsn);
+
+	vfp_single_unpack(&vsm, m);
+	if (vsm.exponent == 0 && vsm.significand)
+		vfp_single_normalise_denormal(&vsm);
+
+	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
+	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
+}
+
+/*
+ * sd = -(sn * sm)
+ */
+static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
+{
+	struct vfp_single vsd, vsn, vsm;
+	u32 exceptions;
+	s32 n = vfp_get_float(sn);
+
+	pr_debug("VFP: s%u = %08x\n", sn, n);
+
+	vfp_single_unpack(&vsn, n);
+	if (vsn.exponent == 0 && vsn.significand)
+		vfp_single_normalise_denormal(&vsn);
+
+	vfp_single_unpack(&vsm, m);
+	if (vsm.exponent == 0 && vsm.significand)
+		vfp_single_normalise_denormal(&vsm);
+
+	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
+	vsd.sign = vfp_sign_negate(vsd.sign);
+	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
+}
+
+/*
+ * sd = sn + sm
+ */
+static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
+{
+	struct vfp_single vsd, vsn, vsm;
+	u32 exceptions;
+	s32 n = vfp_get_float(sn);
+
+	pr_debug("VFP: s%u = %08x\n", sn, n);
+
+	/*
+	 * Unpack and normalise denormals.
+	 */
+	vfp_single_unpack(&vsn, n);
+	if (vsn.exponent == 0 && vsn.significand)
+		vfp_single_normalise_denormal(&vsn);
+
+	vfp_single_unpack(&vsm, m);
+	if (vsm.exponent == 0 && vsm.significand)
+		vfp_single_normalise_denormal(&vsm);
+
+	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
+
+	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
+}
+
+/*
+ * sd = sn - sm
+ */
+static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
+{
+	/*
+	 * Subtraction is addition with one sign inverted.
+	 */
+	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
+}
+
+/*
+ * sd = sn / sm
+ */
+static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
+{
+	struct vfp_single vsd, vsn, vsm;
+	u32 exceptions = 0;
+	s32 n = vfp_get_float(sn);
+	int tm, tn;
+
+	pr_debug("VFP: s%u = %08x\n", sn, n);
+
+	vfp_single_unpack(&vsn, n);
+	vfp_single_unpack(&vsm, m);
+
+	vsd.sign = vsn.sign ^ vsm.sign;
+
+	tn = vfp_single_type(&vsn);
+	tm = vfp_single_type(&vsm);
+
+	/*
+	 * Is n a NAN?
+	 */
+	if (tn & VFP_NAN)
+		goto vsn_nan;
+
+	/*
+	 * Is m a NAN?
+	 */
+	if (tm & VFP_NAN)
+		goto vsm_nan;
+
+	/*
+	 * If n and m are infinity, the result is invalid
+	 * If n and m are zero, the result is invalid
+	 */
+	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
+		goto invalid;
+
+	/*
+	 * If n is infinity, the result is infinity
+	 */
+	if (tn & VFP_INFINITY)
+		goto infinity;
+
+	/*
+	 * If m is zero, raise div0 exception
+	 */
+	if (tm & VFP_ZERO)
+		goto divzero;
+
+	/*
+	 * If m is infinity, or n is zero, the result is zero
+	 */
+	if (tm & VFP_INFINITY || tn & VFP_ZERO)
+		goto zero;
+
+	if (tn & VFP_DENORMAL)
+		vfp_single_normalise_denormal(&vsn);
+	if (tm & VFP_DENORMAL)
+		vfp_single_normalise_denormal(&vsm);
+
+	/*
+	 * Ok, we have two numbers, we can perform division.
+	 */
+	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
+	vsm.significand <<= 1;
+	if (vsm.significand <= (2 * vsn.significand)) {
+		vsn.significand >>= 1;
+		vsd.exponent++;
+	}
+	vsd.significand = ((u64)vsn.significand << 32) / vsm.significand;
+	if ((vsd.significand & 0x3f) == 0)
+		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
+
+	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
+
+ vsn_nan:
+	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
+ pack:
+	vfp_put_float(sd, vfp_single_pack(&vsd));
+	return exceptions;
+
+ vsm_nan:
+	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
+	goto pack;
+
+ zero:
+	vsd.exponent = 0;
+	vsd.significand = 0;
+	goto pack;
+
+ divzero:
+	exceptions = FPSCR_DZC;
+ infinity:
+	vsd.exponent = 255;
+	vsd.significand = 0;
+	goto pack;
+
+ invalid:
+	vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
+	return FPSCR_IOC;
+}
+
+static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
+	[FOP_TO_IDX(FOP_FMAC)]	= vfp_single_fmac,
+	[FOP_TO_IDX(FOP_FNMAC)]	= vfp_single_fnmac,
+	[FOP_TO_IDX(FOP_FMSC)]	= vfp_single_fmsc,
+	[FOP_TO_IDX(FOP_FNMSC)]	= vfp_single_fnmsc,
+	[FOP_TO_IDX(FOP_FMUL)]	= vfp_single_fmul,
+	[FOP_TO_IDX(FOP_FNMUL)]	= vfp_single_fnmul,
+	[FOP_TO_IDX(FOP_FADD)]	= vfp_single_fadd,
+	[FOP_TO_IDX(FOP_FSUB)]	= vfp_single_fsub,
+	[FOP_TO_IDX(FOP_FDIV)]	= vfp_single_fdiv,
+};
+
+#define FREG_BANK(x)	((x) & 0x18)
+#define FREG_IDX(x)	((x) & 7)
+
+u32 vfp_single_cpdo(u32 inst, u32 fpscr)
+{
+	u32 op = inst & FOP_MASK;
+	u32 exceptions = 0;
+	unsigned int sd = vfp_get_sd(inst);
+	unsigned int sn = vfp_get_sn(inst);
+	unsigned int sm = vfp_get_sm(inst);
+	unsigned int vecitr, veclen, vecstride;
+	u32 (*fop)(int, int, s32, u32);
+
+	veclen = fpscr & FPSCR_LENGTH_MASK;
+	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
+
+	/*
+	 * If destination bank is zero, vector length is always '1'.
+	 * ARM DDI0100F C5.1.3, C5.3.2.
+	 */
+	if (FREG_BANK(sd) == 0)
+		veclen = 0;
+
+	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
+		 (veclen >> FPSCR_LENGTH_BIT) + 1);
+
+	fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
+	if (!fop)
+		goto invalid;
+
+	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
+		s32 m = vfp_get_float(sm);
+		u32 except;
+
+		if (op == FOP_EXT)
+			pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
+				 vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
+		else
+			pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
+				 vecitr >> FPSCR_LENGTH_BIT, sd, sn,
+				 FOP_TO_IDX(op), sm, m);
+
+		except = fop(sd, sn, m, fpscr);
+		pr_debug("VFP: itr%d: exceptions=%08x\n",
+			 vecitr >> FPSCR_LENGTH_BIT, except);
+
+		exceptions |= except;
+
+		/*
+		 * This ensures that comparisons only operate on scalars;
+		 * comparisons always return with one FPSCR status bit set.
+		 */
+		if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
+			break;
+
+		/*
+		 * CHECK: It appears to be undefined whether we stop when
+		 * we encounter an exception.  We continue.
+		 */
+
+		sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
+		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
+		if (FREG_BANK(sm) != 0)
+			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
+	}
+	return exceptions;
+
+ invalid:
+	return (u32)-1;
+}