| /* deflate.c -- compress data using the deflation algorithm |
| * Copyright (C) 1992-1993 Jean-loup Gailly |
| * This is free software; you can redistribute it and/or modify it under the |
| * terms of the GNU General Public License, see the file COPYING. |
| */ |
| |
| /* |
| * PURPOSE |
| * |
| * Identify new text as repetitions of old text within a fixed- |
| * length sliding window trailing behind the new text. |
| * |
| * DISCUSSION |
| * |
| * The "deflation" process depends on being able to identify portions |
| * of the input text which are identical to earlier input (within a |
| * sliding window trailing behind the input currently being processed). |
| * |
| * The most straightforward technique turns out to be the fastest for |
| * most input files: try all possible matches and select the longest. |
| * The key feature of this algorithm is that insertions into the string |
| * dictionary are very simple and thus fast, and deletions are avoided |
| * completely. Insertions are performed at each input character, whereas |
| * string matches are performed only when the previous match ends. So it |
| * is preferable to spend more time in matches to allow very fast string |
| * insertions and avoid deletions. The matching algorithm for small |
| * strings is inspired from that of Rabin & Karp. A brute force approach |
| * is used to find longer strings when a small match has been found. |
| * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
| * (by Leonid Broukhis). |
| * A previous version of this file used a more sophisticated algorithm |
| * (by Fiala and Greene) which is guaranteed to run in linear amortized |
| * time, but has a larger average cost, uses more memory and is patented. |
| * However the F&G algorithm may be faster for some highly redundant |
| * files if the parameter max_chain_length (described below) is too large. |
| * |
| * ACKNOWLEDGEMENTS |
| * |
| * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
| * I found it in 'freeze' written by Leonid Broukhis. |
| * Thanks to many info-zippers for bug reports and testing. |
| * |
| * REFERENCES |
| * |
| * APPNOTE.TXT documentation file in PKZIP 1.93a distribution. |
| * |
| * A description of the Rabin and Karp algorithm is given in the book |
| * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
| * |
| * Fiala,E.R., and Greene,D.H. |
| * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
| * |
| * INTERFACE |
| * |
| * void lm_init (int pack_level, ush *flags) |
| * Initialize the "longest match" routines for a new file |
| * |
| * ulg deflate (void) |
| * Processes a new input file and return its compressed length. Sets |
| * the compressed length, crc, deflate flags and internal file |
| * attributes. |
| */ |
| |
| #include <stdio.h> |
| |
| #include "tailor.h" |
| #include "gzip.h" |
| |
| #ifdef RCSID |
| static char rcsid[] = "$Id: deflate.c,v 1.1 2002/08/18 00:59:21 hpa Exp $"; |
| #endif |
| |
| /* =========================================================================== |
| * Configuration parameters |
| */ |
| |
| /* Compile with MEDIUM_MEM to reduce the memory requirements or |
| * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the |
| * entire input file can be held in memory (not possible on 16 bit systems). |
| * Warning: defining these symbols affects HASH_BITS (see below) and thus |
| * affects the compression ratio. The compressed output |
| * is still correct, and might even be smaller in some cases. |
| */ |
| |
| #ifdef SMALL_MEM |
| # define HASH_BITS 13 /* Number of bits used to hash strings */ |
| #endif |
| #ifdef MEDIUM_MEM |
| # define HASH_BITS 14 |
| #endif |
| #ifndef HASH_BITS |
| # define HASH_BITS 15 |
| /* For portability to 16 bit machines, do not use values above 15. */ |
| #endif |
| |
| /* To save space (see unlzw.c), we overlay prev+head with tab_prefix and |
| * window with tab_suffix. Check that we can do this: |
| */ |
| #if (WSIZE<<1) > (1<<BITS) |
| error: cannot overlay window with tab_suffix and prev with tab_prefix0 |
| #endif |
| #if HASH_BITS > BITS-1 |
| error: cannot overlay head with tab_prefix1 |
| #endif |
| |
| #define HASH_SIZE (unsigned)(1<<HASH_BITS) |
| #define HASH_MASK (HASH_SIZE-1) |
| #define WMASK (WSIZE-1) |
| /* HASH_SIZE and WSIZE must be powers of two */ |
| |
| #define NIL 0 |
| /* Tail of hash chains */ |
| |
| #define FAST 4 |
| #define SLOW 2 |
| /* speed options for the general purpose bit flag */ |
| |
| #ifndef TOO_FAR |
| # define TOO_FAR 4096 |
| #endif |
| /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
| |
| /* =========================================================================== |
| * Local data used by the "longest match" routines. |
| */ |
| |
| typedef ush Pos; |
| typedef unsigned IPos; |
| /* A Pos is an index in the character window. We use short instead of int to |
| * save space in the various tables. IPos is used only for parameter passing. |
| */ |
| |
| /* DECLARE(uch, window, 2L*WSIZE); */ |
| /* Sliding window. Input bytes are read into the second half of the window, |
| * and move to the first half later to keep a dictionary of at least WSIZE |
| * bytes. With this organization, matches are limited to a distance of |
| * WSIZE-MAX_MATCH bytes, but this ensures that IO is always |
| * performed with a length multiple of the block size. Also, it limits |
| * the window size to 64K, which is quite useful on MSDOS. |
| * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would |
| * be less efficient). |
| */ |
| |
| /* DECLARE(Pos, prev, WSIZE); */ |
| /* Link to older string with same hash index. To limit the size of this |
| * array to 64K, this link is maintained only for the last 32K strings. |
| * An index in this array is thus a window index modulo 32K. |
| */ |
| |
| /* DECLARE(Pos, head, 1<<HASH_BITS); */ |
| /* Heads of the hash chains or NIL. */ |
| |
| ulg window_size = (ulg)2*WSIZE; |
| /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the |
| * input file length plus MIN_LOOKAHEAD. |
| */ |
| |
| long block_start; |
| /* window position at the beginning of the current output block. Gets |
| * negative when the window is moved backwards. |
| */ |
| |
| local unsigned ins_h; /* hash index of string to be inserted */ |
| |
| #define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH) |
| /* Number of bits by which ins_h and del_h must be shifted at each |
| * input step. It must be such that after MIN_MATCH steps, the oldest |
| * byte no longer takes part in the hash key, that is: |
| * H_SHIFT * MIN_MATCH >= HASH_BITS |
| */ |
| |
| unsigned int prev_length; |
| /* Length of the best match at previous step. Matches not greater than this |
| * are discarded. This is used in the lazy match evaluation. |
| */ |
| |
| unsigned strstart; /* start of string to insert */ |
| unsigned match_start; /* start of matching string */ |
| local int eofile; /* flag set at end of input file */ |
| local unsigned lookahead; /* number of valid bytes ahead in window */ |
| |
| unsigned max_chain_length; |
| /* To speed up deflation, hash chains are never searched beyond this length. |
| * A higher limit improves compression ratio but degrades the speed. |
| */ |
| |
| local unsigned int max_lazy_match; |
| /* Attempt to find a better match only when the current match is strictly |
| * smaller than this value. This mechanism is used only for compression |
| * levels >= 4. |
| */ |
| #define max_insert_length max_lazy_match |
| /* Insert new strings in the hash table only if the match length |
| * is not greater than this length. This saves time but degrades compression. |
| * max_insert_length is used only for compression levels <= 3. |
| */ |
| |
| local int compr_level; |
| /* compression level (1..9) */ |
| |
| unsigned good_match; |
| /* Use a faster search when the previous match is longer than this */ |
| |
| |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on |
| * the desired pack level (0..9). The values given below have been tuned to |
| * exclude worst case performance for pathological files. Better values may be |
| * found for specific files. |
| */ |
| |
| typedef struct config { |
| ush good_length; /* reduce lazy search above this match length */ |
| ush max_lazy; /* do not perform lazy search above this match length */ |
| ush nice_length; /* quit search above this match length */ |
| ush max_chain; |
| } config; |
| |
| #ifdef FULL_SEARCH |
| # define nice_match MAX_MATCH |
| #else |
| int nice_match; /* Stop searching when current match exceeds this */ |
| #endif |
| |
| local config configuration_table[10] = { |
| /* good lazy nice chain */ |
| /* 0 */ {0, 0, 0, 0}, /* store only */ |
| /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */ |
| /* 2 */ {4, 5, 16, 8}, |
| /* 3 */ {4, 6, 32, 32}, |
| |
| /* 4 */ {4, 4, 16, 16}, /* lazy matches */ |
| /* 5 */ {8, 16, 32, 32}, |
| /* 6 */ {8, 16, 128, 128}, |
| /* 7 */ {8, 32, 128, 256}, |
| /* 8 */ {32, 128, 258, 1024}, |
| /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */ |
| |
| /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
| * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
| * meaning. |
| */ |
| |
| #define EQUAL 0 |
| /* result of memcmp for equal strings */ |
| |
| /* =========================================================================== |
| * Prototypes for local functions. |
| */ |
| local void fill_window OF((void)); |
| local ulg deflate_fast OF((void)); |
| |
| int longest_match OF((IPos cur_match)); |
| #ifdef ASMV |
| void match_init OF((void)); /* asm code initialization */ |
| #endif |
| |
| #ifdef DEBUG |
| local void check_match OF((IPos start, IPos match, int length)); |
| #endif |
| |
| /* =========================================================================== |
| * Update a hash value with the given input byte |
| * IN assertion: all calls to to UPDATE_HASH are made with consecutive |
| * input characters, so that a running hash key can be computed from the |
| * previous key instead of complete recalculation each time. |
| */ |
| #define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK) |
| |
| /* =========================================================================== |
| * Insert string s in the dictionary and set match_head to the previous head |
| * of the hash chain (the most recent string with same hash key). Return |
| * the previous length of the hash chain. |
| * IN assertion: all calls to to INSERT_STRING are made with consecutive |
| * input characters and the first MIN_MATCH bytes of s are valid |
| * (except for the last MIN_MATCH-1 bytes of the input file). |
| */ |
| #define INSERT_STRING(s, match_head) \ |
| (UPDATE_HASH(ins_h, window[(s) + MIN_MATCH-1]), \ |
| prev[(s) & WMASK] = match_head = head[ins_h], \ |
| head[ins_h] = (s)) |
| |
| /* =========================================================================== |
| * Initialize the "longest match" routines for a new file |
| */ |
| void lm_init (pack_level, flags) |
| int pack_level; /* 0: store, 1: best speed, 9: best compression */ |
| ush *flags; /* general purpose bit flag */ |
| { |
| register unsigned j; |
| |
| if (pack_level < 1 || pack_level > 9) error("bad pack level"); |
| compr_level = pack_level; |
| |
| /* Initialize the hash table. */ |
| memzero((char*)head, HASH_SIZE*sizeof(*head)); |
| |
| /* prev will be initialized on the fly */ |
| |
| /* Set the default configuration parameters: |
| */ |
| max_lazy_match = configuration_table[pack_level].max_lazy; |
| good_match = configuration_table[pack_level].good_length; |
| #ifndef FULL_SEARCH |
| nice_match = configuration_table[pack_level].nice_length; |
| #endif |
| max_chain_length = configuration_table[pack_level].max_chain; |
| if (pack_level == 1) { |
| *flags |= FAST; |
| } else if (pack_level == 9) { |
| *flags |= SLOW; |
| } |
| /* ??? reduce max_chain_length for binary files */ |
| |
| strstart = 0; |
| block_start = 0L; |
| #ifdef ASMV |
| match_init(); /* initialize the asm code */ |
| #endif |
| |
| lookahead = read_buf((char*)window, |
| sizeof(int) <= 2 ? (unsigned)WSIZE : 2*WSIZE); |
| |
| if (lookahead == 0 || lookahead == (unsigned)EOF) { |
| eofile = 1, lookahead = 0; |
| return; |
| } |
| eofile = 0; |
| /* Make sure that we always have enough lookahead. This is important |
| * if input comes from a device such as a tty. |
| */ |
| while (lookahead < MIN_LOOKAHEAD && !eofile) fill_window(); |
| |
| ins_h = 0; |
| for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(ins_h, window[j]); |
| /* If lookahead < MIN_MATCH, ins_h is garbage, but this is |
| * not important since only literal bytes will be emitted. |
| */ |
| } |
| |
| /* =========================================================================== |
| * Set match_start to the longest match starting at the given string and |
| * return its length. Matches shorter or equal to prev_length are discarded, |
| * in which case the result is equal to prev_length and match_start is |
| * garbage. |
| * IN assertions: cur_match is the head of the hash chain for the current |
| * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
| */ |
| #ifndef ASMV |
| /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or |
| * match.s. The code is functionally equivalent, so you can use the C version |
| * if desired. |
| */ |
| int longest_match(cur_match) |
| IPos cur_match; /* current match */ |
| { |
| unsigned chain_length = max_chain_length; /* max hash chain length */ |
| register uch *scan = window + strstart; /* current string */ |
| register uch *match; /* matched string */ |
| register int len; /* length of current match */ |
| int best_len = prev_length; /* best match length so far */ |
| IPos limit = strstart > (IPos)MAX_DIST ? strstart - (IPos)MAX_DIST : NIL; |
| /* Stop when cur_match becomes <= limit. To simplify the code, |
| * we prevent matches with the string of window index 0. |
| */ |
| |
| /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
| * It is easy to get rid of this optimization if necessary. |
| */ |
| #if HASH_BITS < 8 || MAX_MATCH != 258 |
| error: Code too clever |
| #endif |
| |
| #ifdef UNALIGNED_OK |
| /* Compare two bytes at a time. Note: this is not always beneficial. |
| * Try with and without -DUNALIGNED_OK to check. |
| */ |
| register uch *strend = window + strstart + MAX_MATCH - 1; |
| register ush scan_start = *(ush*)scan; |
| register ush scan_end = *(ush*)(scan+best_len-1); |
| #else |
| register uch *strend = window + strstart + MAX_MATCH; |
| register uch scan_end1 = scan[best_len-1]; |
| register uch scan_end = scan[best_len]; |
| #endif |
| |
| /* Do not waste too much time if we already have a good match: */ |
| if (prev_length >= good_match) { |
| chain_length >>= 2; |
| } |
| Assert(strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead"); |
| |
| do { |
| Assert(cur_match < strstart, "no future"); |
| match = window + cur_match; |
| |
| /* Skip to next match if the match length cannot increase |
| * or if the match length is less than 2: |
| */ |
| #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
| /* This code assumes sizeof(unsigned short) == 2. Do not use |
| * UNALIGNED_OK if your compiler uses a different size. |
| */ |
| if (*(ush*)(match+best_len-1) != scan_end || |
| *(ush*)match != scan_start) continue; |
| |
| /* It is not necessary to compare scan[2] and match[2] since they are |
| * always equal when the other bytes match, given that the hash keys |
| * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
| * strstart+3, +5, ... up to strstart+257. We check for insufficient |
| * lookahead only every 4th comparison; the 128th check will be made |
| * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
| * necessary to put more guard bytes at the end of the window, or |
| * to check more often for insufficient lookahead. |
| */ |
| scan++, match++; |
| do { |
| } while (*(ush*)(scan+=2) == *(ush*)(match+=2) && |
| *(ush*)(scan+=2) == *(ush*)(match+=2) && |
| *(ush*)(scan+=2) == *(ush*)(match+=2) && |
| *(ush*)(scan+=2) == *(ush*)(match+=2) && |
| scan < strend); |
| /* The funny "do {}" generates better code on most compilers */ |
| |
| /* Here, scan <= window+strstart+257 */ |
| Assert(scan <= window+(unsigned)(window_size-1), "wild scan"); |
| if (*scan == *match) scan++; |
| |
| len = (MAX_MATCH - 1) - (int)(strend-scan); |
| scan = strend - (MAX_MATCH-1); |
| |
| #else /* UNALIGNED_OK */ |
| |
| if (match[best_len] != scan_end || |
| match[best_len-1] != scan_end1 || |
| *match != *scan || |
| *++match != scan[1]) continue; |
| |
| /* The check at best_len-1 can be removed because it will be made |
| * again later. (This heuristic is not always a win.) |
| * It is not necessary to compare scan[2] and match[2] since they |
| * are always equal when the other bytes match, given that |
| * the hash keys are equal and that HASH_BITS >= 8. |
| */ |
| scan += 2, match++; |
| |
| /* We check for insufficient lookahead only every 8th comparison; |
| * the 256th check will be made at strstart+258. |
| */ |
| do { |
| } while (*++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| scan < strend); |
| |
| len = MAX_MATCH - (int)(strend - scan); |
| scan = strend - MAX_MATCH; |
| |
| #endif /* UNALIGNED_OK */ |
| |
| if (len > best_len) { |
| match_start = cur_match; |
| best_len = len; |
| if (len >= nice_match) break; |
| #ifdef UNALIGNED_OK |
| scan_end = *(ush*)(scan+best_len-1); |
| #else |
| scan_end1 = scan[best_len-1]; |
| scan_end = scan[best_len]; |
| #endif |
| } |
| } while ((cur_match = prev[cur_match & WMASK]) > limit |
| && --chain_length != 0); |
| |
| return best_len; |
| } |
| #endif /* ASMV */ |
| |
| #ifdef DEBUG |
| /* =========================================================================== |
| * Check that the match at match_start is indeed a match. |
| */ |
| local void check_match(start, match, length) |
| IPos start, match; |
| int length; |
| { |
| /* check that the match is indeed a match */ |
| if (memcmp((char*)window + match, |
| (char*)window + start, length) != EQUAL) { |
| fprintf(stderr, |
| " start %d, match %d, length %d\n", |
| start, match, length); |
| error("invalid match"); |
| } |
| if (verbose > 1) { |
| fprintf(stderr,"\\[%d,%d]", start-match, length); |
| do { putc(window[start++], stderr); } while (--length != 0); |
| } |
| } |
| #else |
| # define check_match(start, match, length) |
| #endif |
| |
| /* =========================================================================== |
| * Fill the window when the lookahead becomes insufficient. |
| * Updates strstart and lookahead, and sets eofile if end of input file. |
| * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 |
| * OUT assertions: at least one byte has been read, or eofile is set; |
| * file reads are performed for at least two bytes (required for the |
| * translate_eol option). |
| */ |
| local void fill_window() |
| { |
| register unsigned n, m; |
| unsigned more = (unsigned)(window_size - (ulg)lookahead - (ulg)strstart); |
| /* Amount of free space at the end of the window. */ |
| |
| /* If the window is almost full and there is insufficient lookahead, |
| * move the upper half to the lower one to make room in the upper half. |
| */ |
| if (more == (unsigned)EOF) { |
| /* Very unlikely, but possible on 16 bit machine if strstart == 0 |
| * and lookahead == 1 (input done one byte at time) |
| */ |
| more--; |
| } else if (strstart >= WSIZE+MAX_DIST) { |
| /* By the IN assertion, the window is not empty so we can't confuse |
| * more == 0 with more == 64K on a 16 bit machine. |
| */ |
| Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM"); |
| |
| memcpy((char*)window, (char*)window+WSIZE, (unsigned)WSIZE); |
| match_start -= WSIZE; |
| strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */ |
| |
| block_start -= (long) WSIZE; |
| |
| for (n = 0; n < HASH_SIZE; n++) { |
| m = head[n]; |
| head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); |
| } |
| for (n = 0; n < WSIZE; n++) { |
| m = prev[n]; |
| prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL); |
| /* If n is not on any hash chain, prev[n] is garbage but |
| * its value will never be used. |
| */ |
| } |
| more += WSIZE; |
| } |
| /* At this point, more >= 2 */ |
| if (!eofile) { |
| n = read_buf((char*)window+strstart+lookahead, more); |
| if (n == 0 || n == (unsigned)EOF) { |
| eofile = 1; |
| } else { |
| lookahead += n; |
| } |
| } |
| } |
| |
| /* =========================================================================== |
| * Flush the current block, with given end-of-file flag. |
| * IN assertion: strstart is set to the end of the current match. |
| */ |
| #define FLUSH_BLOCK(eof) \ |
| flush_block(block_start >= 0L ? (char*)&window[(unsigned)block_start] : \ |
| (char*)NULL, (long)strstart - block_start, (eof)) |
| |
| /* =========================================================================== |
| * Processes a new input file and return its compressed length. This |
| * function does not perform lazy evaluationof matches and inserts |
| * new strings in the dictionary only for unmatched strings or for short |
| * matches. It is used only for the fast compression options. |
| */ |
| local ulg deflate_fast() |
| { |
| IPos hash_head; /* head of the hash chain */ |
| int flush; /* set if current block must be flushed */ |
| unsigned match_length = 0; /* length of best match */ |
| |
| prev_length = MIN_MATCH-1; |
| while (lookahead != 0) { |
| /* Insert the string window[strstart .. strstart+2] in the |
| * dictionary, and set hash_head to the head of the hash chain: |
| */ |
| INSERT_STRING(strstart, hash_head); |
| |
| /* Find the longest match, discarding those <= prev_length. |
| * At this point we have always match_length < MIN_MATCH |
| */ |
| if (hash_head != NIL && strstart - hash_head <= MAX_DIST) { |
| /* To simplify the code, we prevent matches with the string |
| * of window index 0 (in particular we have to avoid a match |
| * of the string with itself at the start of the input file). |
| */ |
| match_length = longest_match (hash_head); |
| /* longest_match() sets match_start */ |
| if (match_length > lookahead) match_length = lookahead; |
| } |
| if (match_length >= MIN_MATCH) { |
| check_match(strstart, match_start, match_length); |
| |
| flush = ct_tally(strstart-match_start, match_length - MIN_MATCH); |
| |
| lookahead -= match_length; |
| |
| /* Insert new strings in the hash table only if the match length |
| * is not too large. This saves time but degrades compression. |
| */ |
| if (match_length <= max_insert_length) { |
| match_length--; /* string at strstart already in hash table */ |
| do { |
| strstart++; |
| INSERT_STRING(strstart, hash_head); |
| /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
| * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH |
| * these bytes are garbage, but it does not matter since |
| * the next lookahead bytes will be emitted as literals. |
| */ |
| } while (--match_length != 0); |
| strstart++; |
| } else { |
| strstart += match_length; |
| match_length = 0; |
| ins_h = window[strstart]; |
| UPDATE_HASH(ins_h, window[strstart+1]); |
| #if MIN_MATCH != 3 |
| Call UPDATE_HASH() MIN_MATCH-3 more times |
| #endif |
| } |
| } else { |
| /* No match, output a literal byte */ |
| Tracevv((stderr,"%c",window[strstart])); |
| flush = ct_tally (0, window[strstart]); |
| lookahead--; |
| strstart++; |
| } |
| if (flush) FLUSH_BLOCK(0), block_start = strstart; |
| |
| /* Make sure that we always have enough lookahead, except |
| * at the end of the input file. We need MAX_MATCH bytes |
| * for the next match, plus MIN_MATCH bytes to insert the |
| * string following the next match. |
| */ |
| while (lookahead < MIN_LOOKAHEAD && !eofile) fill_window(); |
| |
| } |
| return FLUSH_BLOCK(1); /* eof */ |
| } |
| |
| /* =========================================================================== |
| * Same as above, but achieves better compression. We use a lazy |
| * evaluation for matches: a match is finally adopted only if there is |
| * no better match at the next window position. |
| */ |
| ulg deflate() |
| { |
| IPos hash_head; /* head of hash chain */ |
| IPos prev_match; /* previous match */ |
| int flush; /* set if current block must be flushed */ |
| int match_available = 0; /* set if previous match exists */ |
| register unsigned match_length = MIN_MATCH-1; /* length of best match */ |
| #ifdef DEBUG |
| extern long isize; /* byte length of input file, for debug only */ |
| #endif |
| |
| if (compr_level <= 3) return deflate_fast(); /* optimized for speed */ |
| |
| /* Process the input block. */ |
| while (lookahead != 0) { |
| /* Insert the string window[strstart .. strstart+2] in the |
| * dictionary, and set hash_head to the head of the hash chain: |
| */ |
| INSERT_STRING(strstart, hash_head); |
| |
| /* Find the longest match, discarding those <= prev_length. |
| */ |
| prev_length = match_length, prev_match = match_start; |
| match_length = MIN_MATCH-1; |
| |
| if (hash_head != NIL && prev_length < max_lazy_match && |
| strstart - hash_head <= MAX_DIST) { |
| /* To simplify the code, we prevent matches with the string |
| * of window index 0 (in particular we have to avoid a match |
| * of the string with itself at the start of the input file). |
| */ |
| match_length = longest_match (hash_head); |
| /* longest_match() sets match_start */ |
| if (match_length > lookahead) match_length = lookahead; |
| |
| /* Ignore a length 3 match if it is too distant: */ |
| if (match_length == MIN_MATCH && strstart-match_start > TOO_FAR){ |
| /* If prev_match is also MIN_MATCH, match_start is garbage |
| * but we will ignore the current match anyway. |
| */ |
| match_length--; |
| } |
| } |
| /* If there was a match at the previous step and the current |
| * match is not better, output the previous match: |
| */ |
| if (prev_length >= MIN_MATCH && match_length <= prev_length) { |
| |
| check_match(strstart-1, prev_match, prev_length); |
| |
| flush = ct_tally(strstart-1-prev_match, prev_length - MIN_MATCH); |
| |
| /* Insert in hash table all strings up to the end of the match. |
| * strstart-1 and strstart are already inserted. |
| */ |
| lookahead -= prev_length-1; |
| prev_length -= 2; |
| do { |
| strstart++; |
| INSERT_STRING(strstart, hash_head); |
| /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
| * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH |
| * these bytes are garbage, but it does not matter since the |
| * next lookahead bytes will always be emitted as literals. |
| */ |
| } while (--prev_length != 0); |
| match_available = 0; |
| match_length = MIN_MATCH-1; |
| strstart++; |
| if (flush) FLUSH_BLOCK(0), block_start = strstart; |
| |
| } else if (match_available) { |
| /* If there was no match at the previous position, output a |
| * single literal. If there was a match but the current match |
| * is longer, truncate the previous match to a single literal. |
| */ |
| Tracevv((stderr,"%c",window[strstart-1])); |
| if (ct_tally (0, window[strstart-1])) { |
| FLUSH_BLOCK(0), block_start = strstart; |
| } |
| strstart++; |
| lookahead--; |
| } else { |
| /* There is no previous match to compare with, wait for |
| * the next step to decide. |
| */ |
| match_available = 1; |
| strstart++; |
| lookahead--; |
| } |
| Assert (strstart <= isize && lookahead <= isize, "a bit too far"); |
| |
| /* Make sure that we always have enough lookahead, except |
| * at the end of the input file. We need MAX_MATCH bytes |
| * for the next match, plus MIN_MATCH bytes to insert the |
| * string following the next match. |
| */ |
| while (lookahead < MIN_LOOKAHEAD && !eofile) fill_window(); |
| } |
| if (match_available) ct_tally (0, window[strstart-1]); |
| |
| return FLUSH_BLOCK(1); /* eof */ |
| } |