blob: 79427b005b4ba2e18e159a747fc7ce064c75b367 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
//
/// \file common.h
/// \brief Common functions needed in many places in liblzma
//
// Author: Lasse Collin
//
// This file has been put into the public domain.
// You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////
#include "common.h"
#include <dlfcn.h>
/////////////
// Version //
/////////////
extern LZMA_API(uint32_t)
lzma_version_number(void)
{
return LZMA_VERSION;
}
extern LZMA_API(const char *)
lzma_version_string(void)
{
return LZMA_VERSION_STRING;
}
///////////////////////
// Memory allocation //
///////////////////////
extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
lzma_alloc(size_t size, const lzma_allocator *allocator)
{
// Some malloc() variants return NULL if called with size == 0.
if (size == 0)
size = 1;
void *ptr;
if (allocator != NULL && allocator->alloc != NULL)
ptr = allocator->alloc(allocator->opaque, 1, size);
else
ptr = malloc(size);
return ptr;
}
extern void * lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
lzma_alloc_zero(size_t size, const lzma_allocator *allocator)
{
// Some calloc() variants return NULL if called with size == 0.
if (size == 0)
size = 1;
void *ptr;
if (allocator != NULL && allocator->alloc != NULL) {
ptr = allocator->alloc(allocator->opaque, 1, size);
if (ptr != NULL)
memzero(ptr, size);
} else {
ptr = calloc(1, size);
}
return ptr;
}
extern void
lzma_free(void *ptr, const lzma_allocator *allocator)
{
if (allocator != NULL && allocator->free != NULL)
allocator->free(allocator->opaque, ptr);
else
free(ptr);
return;
}
//////////
// Misc //
//////////
extern size_t
lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size)
{
const size_t in_avail = in_size - *in_pos;
const size_t out_avail = out_size - *out_pos;
const size_t copy_size = my_min(in_avail, out_avail);
memcpy(out + *out_pos, in + *in_pos, copy_size);
*in_pos += copy_size;
*out_pos += copy_size;
return copy_size;
}
extern lzma_ret
lzma_next_filter_init(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter_info *filters)
{
lzma_next_coder_init(filters[0].init, next, allocator);
next->id = filters[0].id;
return filters[0].init == NULL
? LZMA_OK : filters[0].init(next, allocator, filters);
}
extern lzma_ret
lzma_next_filter_update(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter *reversed_filters)
{
// Check that the application isn't trying to change the Filter ID.
// End of filters is indicated with LZMA_VLI_UNKNOWN in both
// reversed_filters[0].id and next->id.
if (reversed_filters[0].id != next->id)
return LZMA_PROG_ERROR;
if (reversed_filters[0].id == LZMA_VLI_UNKNOWN)
return LZMA_OK;
assert(next->update != NULL);
return next->update(next->coder, allocator, NULL, reversed_filters);
}
extern void
lzma_next_end(lzma_next_coder *next, const lzma_allocator *allocator)
{
if (next->init != (uintptr_t)(NULL)) {
// To avoid tiny end functions that simply call
// lzma_free(coder, allocator), we allow leaving next->end
// NULL and call lzma_free() here.
if (next->end != NULL)
next->end(next->coder, allocator);
else
lzma_free(next->coder, allocator);
// Reset the variables so the we don't accidentally think
// that it is an already initialized coder.
*next = LZMA_NEXT_CODER_INIT;
}
return;
}
//////////////////////////////////////
// External to internal API wrapper //
//////////////////////////////////////
#ifdef LIBLZMA2_COMPAT_DYNAMIC
static void
init_liblzma2_compat(lzma_stream *strm)
{
void *handle = dlopen("liblzma.so.2", RTLD_LAZY | RTLD_NOLOAD);
if (handle) {
dlclose(handle);
strm->internal->liblzma2_compat = true;
return;
}
strm->internal->liblzma2_compat = false;
}
static bool
liblzma2_loaded(lzma_stream *strm)
{
return strm->internal->liblzma2_compat;
}
#else
static void
init_liblzma2_compat(lzma_stream *strm)
{
}
#ifdef LIBLZMA2_COMPAT
static bool liblzma2_loaded(lzma_stream *strm)
{
return true;
}
#else
static bool liblzma2_loaded(lzma_stream *strm)
{
return false;
}
#endif
#endif
extern lzma_ret
lzma_strm_init(lzma_stream *strm)
{
if (strm == NULL)
return LZMA_PROG_ERROR;
if (strm->internal == NULL) {
strm->internal = lzma_alloc(sizeof(lzma_internal),
strm->allocator);
if (strm->internal == NULL)
return LZMA_MEM_ERROR;
strm->internal->next = LZMA_NEXT_CODER_INIT;
init_liblzma2_compat(strm);
}
memzero(strm->internal->supported_actions,
sizeof(strm->internal->supported_actions));
strm->internal->sequence = ISEQ_RUN;
strm->internal->allow_buf_error = false;
strm->total_in = 0;
strm->total_out = 0;
return LZMA_OK;
}
// Before v5.0.0~6 (liblzma: A few ABI tweaks to reserve space in
// structures, 2010-10-23), the reserved fields in lzma_stream were:
//
// void *reserved_ptr1;
// void *reserved_ptr2;
// uint64_t reserved_int1;
// uint64_t reserved_int2;
// lzma_reserved_enum reserved_enum1;
// lzma_reserved_enum reserved_enum2;
//
// Nowadays there are two more pointers between reserved_ptr2 and
// reserved_int1 and two size_t fields between reserved_int2 and
// reserved_enum1.
//
// When strm->internal->liblzma2_compat is set, limit the checks of
// reserved fields to fields that were present in the old ABI to avoid
// segfaults and spurious "Unsupported options" from callers sharing
// the process image that expect the old ABI.
extern LZMA_API(lzma_ret)
lzma_code(lzma_stream *strm, lzma_action action)
{
// Sanity checks
if ((strm->next_in == NULL && strm->avail_in != 0)
|| (strm->next_out == NULL && strm->avail_out != 0)
|| strm->internal == NULL
|| strm->internal->next.code == NULL
|| (unsigned int)(action) > LZMA_ACTION_MAX
|| !strm->internal->supported_actions[action])
return LZMA_PROG_ERROR;
// Check if unsupported members have been set to non-zero or non-NULL,
// which would indicate that some new feature is wanted.
if (strm->reserved_ptr1 != NULL
|| strm->reserved_ptr2 != NULL
|| strm->reserved_ptr3 != NULL
|| strm->reserved_ptr4 != NULL)
return LZMA_OPTIONS_ERROR;
if (liblzma2_loaded(strm))
; /* Enough checks. */
else if (strm->reserved_int1 != 0
|| strm->reserved_int2 != 0
|| strm->reserved_int3 != 0
|| strm->reserved_int4 != 0
|| strm->reserved_enum1 != LZMA_RESERVED_ENUM
|| strm->reserved_enum2 != LZMA_RESERVED_ENUM)
return LZMA_OPTIONS_ERROR;
switch (strm->internal->sequence) {
case ISEQ_RUN:
switch (action) {
case LZMA_RUN:
break;
case LZMA_SYNC_FLUSH:
strm->internal->sequence = ISEQ_SYNC_FLUSH;
break;
case LZMA_FULL_FLUSH:
strm->internal->sequence = ISEQ_FULL_FLUSH;
break;
case LZMA_FINISH:
strm->internal->sequence = ISEQ_FINISH;
break;
case LZMA_FULL_BARRIER:
strm->internal->sequence = ISEQ_FULL_BARRIER;
break;
}
break;
case ISEQ_SYNC_FLUSH:
// The same action must be used until we return
// LZMA_STREAM_END, and the amount of input must not change.
if (action != LZMA_SYNC_FLUSH
|| strm->internal->avail_in != strm->avail_in)
return LZMA_PROG_ERROR;
break;
case ISEQ_FULL_FLUSH:
if (action != LZMA_FULL_FLUSH
|| strm->internal->avail_in != strm->avail_in)
return LZMA_PROG_ERROR;
break;
case ISEQ_FINISH:
if (action != LZMA_FINISH
|| strm->internal->avail_in != strm->avail_in)
return LZMA_PROG_ERROR;
break;
case ISEQ_FULL_BARRIER:
if (action != LZMA_FULL_BARRIER
|| strm->internal->avail_in != strm->avail_in)
return LZMA_PROG_ERROR;
break;
case ISEQ_END:
return LZMA_STREAM_END;
case ISEQ_ERROR:
default:
return LZMA_PROG_ERROR;
}
size_t in_pos = 0;
size_t out_pos = 0;
lzma_ret ret = strm->internal->next.code(
strm->internal->next.coder, strm->allocator,
strm->next_in, &in_pos, strm->avail_in,
strm->next_out, &out_pos, strm->avail_out, action);
strm->next_in += in_pos;
strm->avail_in -= in_pos;
strm->total_in += in_pos;
strm->next_out += out_pos;
strm->avail_out -= out_pos;
strm->total_out += out_pos;
strm->internal->avail_in = strm->avail_in;
// Cast is needed to silence a warning about LZMA_TIMED_OUT, which
// isn't part of lzma_ret enumeration.
switch ((unsigned int)(ret)) {
case LZMA_OK:
// Don't return LZMA_BUF_ERROR when it happens the first time.
// This is to avoid returning LZMA_BUF_ERROR when avail_out
// was zero but still there was no more data left to written
// to next_out.
if (out_pos == 0 && in_pos == 0) {
if (strm->internal->allow_buf_error)
ret = LZMA_BUF_ERROR;
else
strm->internal->allow_buf_error = true;
} else {
strm->internal->allow_buf_error = false;
}
break;
case LZMA_TIMED_OUT:
strm->internal->allow_buf_error = false;
ret = LZMA_OK;
break;
case LZMA_STREAM_END:
if (strm->internal->sequence == ISEQ_SYNC_FLUSH
|| strm->internal->sequence == ISEQ_FULL_FLUSH
|| strm->internal->sequence
== ISEQ_FULL_BARRIER)
strm->internal->sequence = ISEQ_RUN;
else
strm->internal->sequence = ISEQ_END;
// Fall through
case LZMA_NO_CHECK:
case LZMA_UNSUPPORTED_CHECK:
case LZMA_GET_CHECK:
case LZMA_MEMLIMIT_ERROR:
// Something else than LZMA_OK, but not a fatal error,
// that is, coding may be continued (except if ISEQ_END).
strm->internal->allow_buf_error = false;
break;
default:
// All the other errors are fatal; coding cannot be continued.
assert(ret != LZMA_BUF_ERROR);
strm->internal->sequence = ISEQ_ERROR;
break;
}
return ret;
}
extern LZMA_API(void)
lzma_end(lzma_stream *strm)
{
if (strm != NULL && strm->internal != NULL) {
lzma_next_end(&strm->internal->next, strm->allocator);
lzma_free(strm->internal, strm->allocator);
strm->internal = NULL;
}
return;
}
extern LZMA_API(void)
lzma_get_progress(lzma_stream *strm,
uint64_t *progress_in, uint64_t *progress_out)
{
if (strm->internal->next.get_progress != NULL) {
strm->internal->next.get_progress(strm->internal->next.coder,
progress_in, progress_out);
} else {
*progress_in = strm->total_in;
*progress_out = strm->total_out;
}
return;
}
extern LZMA_API(lzma_check)
lzma_get_check(const lzma_stream *strm)
{
// Return LZMA_CHECK_NONE if we cannot know the check type.
// It's a bug in the application if this happens.
if (strm->internal->next.get_check == NULL)
return LZMA_CHECK_NONE;
return strm->internal->next.get_check(strm->internal->next.coder);
}
extern LZMA_API(uint64_t)
lzma_memusage(const lzma_stream *strm)
{
uint64_t memusage;
uint64_t old_memlimit;
if (strm == NULL || strm->internal == NULL
|| strm->internal->next.memconfig == NULL
|| strm->internal->next.memconfig(
strm->internal->next.coder,
&memusage, &old_memlimit, 0) != LZMA_OK)
return 0;
return memusage;
}
extern LZMA_API(uint64_t)
lzma_memlimit_get(const lzma_stream *strm)
{
uint64_t old_memlimit;
uint64_t memusage;
if (strm == NULL || strm->internal == NULL
|| strm->internal->next.memconfig == NULL
|| strm->internal->next.memconfig(
strm->internal->next.coder,
&memusage, &old_memlimit, 0) != LZMA_OK)
return 0;
return old_memlimit;
}
extern LZMA_API(lzma_ret)
lzma_memlimit_set(lzma_stream *strm, uint64_t new_memlimit)
{
// Dummy variables to simplify memconfig functions
uint64_t old_memlimit;
uint64_t memusage;
if (strm == NULL || strm->internal == NULL
|| strm->internal->next.memconfig == NULL)
return LZMA_PROG_ERROR;
if (new_memlimit != 0 && new_memlimit < LZMA_MEMUSAGE_BASE)
return LZMA_MEMLIMIT_ERROR;
return strm->internal->next.memconfig(strm->internal->next.coder,
&memusage, &old_memlimit, new_memlimit);
}