| #include "cache.h" |
| #include "notes.h" |
| #include "blob.h" |
| #include "tree.h" |
| #include "utf8.h" |
| #include "strbuf.h" |
| #include "tree-walk.h" |
| #include "string-list.h" |
| #include "refs.h" |
| |
| /* |
| * Use a non-balancing simple 16-tree structure with struct int_node as |
| * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a |
| * 16-array of pointers to its children. |
| * The bottom 2 bits of each pointer is used to identify the pointer type |
| * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) |
| * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * |
| * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * |
| * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * |
| * |
| * The root node is a statically allocated struct int_node. |
| */ |
| struct int_node { |
| void *a[16]; |
| }; |
| |
| /* |
| * Leaf nodes come in two variants, note entries and subtree entries, |
| * distinguished by the LSb of the leaf node pointer (see above). |
| * As a note entry, the key is the SHA1 of the referenced object, and the |
| * value is the SHA1 of the note object. |
| * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the |
| * referenced object, using the last byte of the key to store the length of |
| * the prefix. The value is the SHA1 of the tree object containing the notes |
| * subtree. |
| */ |
| struct leaf_node { |
| unsigned char key_sha1[20]; |
| unsigned char val_sha1[20]; |
| }; |
| |
| /* |
| * A notes tree may contain entries that are not notes, and that do not follow |
| * the naming conventions of notes. There are typically none/few of these, but |
| * we still need to keep track of them. Keep a simple linked list sorted alpha- |
| * betically on the non-note path. The list is populated when parsing tree |
| * objects in load_subtree(), and the non-notes are correctly written back into |
| * the tree objects produced by write_notes_tree(). |
| */ |
| struct non_note { |
| struct non_note *next; /* grounded (last->next == NULL) */ |
| char *path; |
| unsigned int mode; |
| unsigned char sha1[20]; |
| }; |
| |
| #define PTR_TYPE_NULL 0 |
| #define PTR_TYPE_INTERNAL 1 |
| #define PTR_TYPE_NOTE 2 |
| #define PTR_TYPE_SUBTREE 3 |
| |
| #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) |
| #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) |
| #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) |
| |
| #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) |
| |
| #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ |
| (memcmp(key_sha1, subtree_sha1, subtree_sha1[19])) |
| |
| struct notes_tree default_notes_tree; |
| |
| static struct string_list display_notes_refs; |
| static struct notes_tree **display_notes_trees; |
| |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
| struct int_node *node, unsigned int n); |
| |
| /* |
| * Search the tree until the appropriate location for the given key is found: |
| * 1. Start at the root node, with n = 0 |
| * 2. If a[0] at the current level is a matching subtree entry, unpack that |
| * subtree entry and remove it; restart search at the current level. |
| * 3. Use the nth nibble of the key as an index into a: |
| * - If a[n] is an int_node, recurse from #2 into that node and increment n |
| * - If a matching subtree entry, unpack that subtree entry (and remove it); |
| * restart search at the current level. |
| * - Otherwise, we have found one of the following: |
| * - a subtree entry which does not match the key |
| * - a note entry which may or may not match the key |
| * - an unused leaf node (NULL) |
| * In any case, set *tree and *n, and return pointer to the tree location. |
| */ |
| static void **note_tree_search(struct notes_tree *t, struct int_node **tree, |
| unsigned char *n, const unsigned char *key_sha1) |
| { |
| struct leaf_node *l; |
| unsigned char i; |
| void *p = (*tree)->a[0]; |
| |
| if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); |
| if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
| /* unpack tree and resume search */ |
| (*tree)->a[0] = NULL; |
| load_subtree(t, l, *tree, *n); |
| free(l); |
| return note_tree_search(t, tree, n, key_sha1); |
| } |
| } |
| |
| i = GET_NIBBLE(*n, key_sha1); |
| p = (*tree)->a[i]; |
| switch (GET_PTR_TYPE(p)) { |
| case PTR_TYPE_INTERNAL: |
| *tree = CLR_PTR_TYPE(p); |
| (*n)++; |
| return note_tree_search(t, tree, n, key_sha1); |
| case PTR_TYPE_SUBTREE: |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); |
| if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) { |
| /* unpack tree and resume search */ |
| (*tree)->a[i] = NULL; |
| load_subtree(t, l, *tree, *n); |
| free(l); |
| return note_tree_search(t, tree, n, key_sha1); |
| } |
| /* fall through */ |
| default: |
| return &((*tree)->a[i]); |
| } |
| } |
| |
| /* |
| * To find a leaf_node: |
| * Search to the tree location appropriate for the given key: |
| * If a note entry with matching key, return the note entry, else return NULL. |
| */ |
| static struct leaf_node *note_tree_find(struct notes_tree *t, |
| struct int_node *tree, unsigned char n, |
| const unsigned char *key_sha1) |
| { |
| void **p = note_tree_search(t, &tree, &n, key_sha1); |
| if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { |
| struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
| if (!hashcmp(key_sha1, l->key_sha1)) |
| return l; |
| } |
| return NULL; |
| } |
| |
| /* |
| * To insert a leaf_node: |
| * Search to the tree location appropriate for the given leaf_node's key: |
| * - If location is unused (NULL), store the tweaked pointer directly there |
| * - If location holds a note entry that matches the note-to-be-inserted, then |
| * combine the two notes (by calling the given combine_notes function). |
| * - If location holds a note entry that matches the subtree-to-be-inserted, |
| * then unpack the subtree-to-be-inserted into the location. |
| * - If location holds a matching subtree entry, unpack the subtree at that |
| * location, and restart the insert operation from that level. |
| * - Else, create a new int_node, holding both the node-at-location and the |
| * node-to-be-inserted, and store the new int_node into the location. |
| */ |
| static void note_tree_insert(struct notes_tree *t, struct int_node *tree, |
| unsigned char n, struct leaf_node *entry, unsigned char type, |
| combine_notes_fn combine_notes) |
| { |
| struct int_node *new_node; |
| struct leaf_node *l; |
| void **p = note_tree_search(t, &tree, &n, entry->key_sha1); |
| |
| assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
| l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
| switch (GET_PTR_TYPE(*p)) { |
| case PTR_TYPE_NULL: |
| assert(!*p); |
| *p = SET_PTR_TYPE(entry, type); |
| return; |
| case PTR_TYPE_NOTE: |
| switch (type) { |
| case PTR_TYPE_NOTE: |
| if (!hashcmp(l->key_sha1, entry->key_sha1)) { |
| /* skip concatenation if l == entry */ |
| if (!hashcmp(l->val_sha1, entry->val_sha1)) |
| return; |
| |
| if (combine_notes(l->val_sha1, entry->val_sha1)) |
| die("failed to combine notes %s and %s" |
| " for object %s", |
| sha1_to_hex(l->val_sha1), |
| sha1_to_hex(entry->val_sha1), |
| sha1_to_hex(l->key_sha1)); |
| free(entry); |
| return; |
| } |
| break; |
| case PTR_TYPE_SUBTREE: |
| if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1, |
| entry->key_sha1)) { |
| /* unpack 'entry' */ |
| load_subtree(t, entry, tree, n); |
| free(entry); |
| return; |
| } |
| break; |
| } |
| break; |
| case PTR_TYPE_SUBTREE: |
| if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) { |
| /* unpack 'l' and restart insert */ |
| *p = NULL; |
| load_subtree(t, l, tree, n); |
| free(l); |
| note_tree_insert(t, tree, n, entry, type, |
| combine_notes); |
| return; |
| } |
| break; |
| } |
| |
| /* non-matching leaf_node */ |
| assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || |
| GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); |
| new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1); |
| note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), |
| combine_notes); |
| *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); |
| note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); |
| } |
| |
| /* |
| * How to consolidate an int_node: |
| * If there are > 1 non-NULL entries, give up and return non-zero. |
| * Otherwise replace the int_node at the given index in the given parent node |
| * with the only entry (or a NULL entry if no entries) from the given tree, |
| * and return 0. |
| */ |
| static int note_tree_consolidate(struct int_node *tree, |
| struct int_node *parent, unsigned char index) |
| { |
| unsigned int i; |
| void *p = NULL; |
| |
| assert(tree && parent); |
| assert(CLR_PTR_TYPE(parent->a[index]) == tree); |
| |
| for (i = 0; i < 16; i++) { |
| if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { |
| if (p) /* more than one entry */ |
| return -2; |
| p = tree->a[i]; |
| } |
| } |
| |
| /* replace tree with p in parent[index] */ |
| parent->a[index] = p; |
| free(tree); |
| return 0; |
| } |
| |
| /* |
| * To remove a leaf_node: |
| * Search to the tree location appropriate for the given leaf_node's key: |
| * - If location does not hold a matching entry, abort and do nothing. |
| * - Replace the matching leaf_node with a NULL entry (and free the leaf_node). |
| * - Consolidate int_nodes repeatedly, while walking up the tree towards root. |
| */ |
| static void note_tree_remove(struct notes_tree *t, struct int_node *tree, |
| unsigned char n, struct leaf_node *entry) |
| { |
| struct leaf_node *l; |
| struct int_node *parent_stack[20]; |
| unsigned char i, j; |
| void **p = note_tree_search(t, &tree, &n, entry->key_sha1); |
| |
| assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
| if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) |
| return; /* type mismatch, nothing to remove */ |
| l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
| if (hashcmp(l->key_sha1, entry->key_sha1)) |
| return; /* key mismatch, nothing to remove */ |
| |
| /* we have found a matching entry */ |
| free(l); |
| *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); |
| |
| /* consolidate this tree level, and parent levels, if possible */ |
| if (!n) |
| return; /* cannot consolidate top level */ |
| /* first, build stack of ancestors between root and current node */ |
| parent_stack[0] = t->root; |
| for (i = 0; i < n; i++) { |
| j = GET_NIBBLE(i, entry->key_sha1); |
| parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); |
| } |
| assert(i == n && parent_stack[i] == tree); |
| /* next, unwind stack until note_tree_consolidate() is done */ |
| while (i > 0 && |
| !note_tree_consolidate(parent_stack[i], parent_stack[i - 1], |
| GET_NIBBLE(i - 1, entry->key_sha1))) |
| i--; |
| } |
| |
| /* Free the entire notes data contained in the given tree */ |
| static void note_tree_free(struct int_node *tree) |
| { |
| unsigned int i; |
| for (i = 0; i < 16; i++) { |
| void *p = tree->a[i]; |
| switch (GET_PTR_TYPE(p)) { |
| case PTR_TYPE_INTERNAL: |
| note_tree_free(CLR_PTR_TYPE(p)); |
| /* fall through */ |
| case PTR_TYPE_NOTE: |
| case PTR_TYPE_SUBTREE: |
| free(CLR_PTR_TYPE(p)); |
| } |
| } |
| } |
| |
| /* |
| * Convert a partial SHA1 hex string to the corresponding partial SHA1 value. |
| * - hex - Partial SHA1 segment in ASCII hex format |
| * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40 |
| * - sha1 - Partial SHA1 value is written here |
| * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20 |
| * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)). |
| * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2). |
| * Pads sha1 with NULs up to sha1_len (not included in returned length). |
| */ |
| static int get_sha1_hex_segment(const char *hex, unsigned int hex_len, |
| unsigned char *sha1, unsigned int sha1_len) |
| { |
| unsigned int i, len = hex_len >> 1; |
| if (hex_len % 2 != 0 || len > sha1_len) |
| return -1; |
| for (i = 0; i < len; i++) { |
| unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]); |
| if (val & ~0xff) |
| return -1; |
| *sha1++ = val; |
| hex += 2; |
| } |
| for (; i < sha1_len; i++) |
| *sha1++ = 0; |
| return len; |
| } |
| |
| static int non_note_cmp(const struct non_note *a, const struct non_note *b) |
| { |
| return strcmp(a->path, b->path); |
| } |
| |
| static void add_non_note(struct notes_tree *t, const char *path, |
| unsigned int mode, const unsigned char *sha1) |
| { |
| struct non_note *p = t->prev_non_note, *n; |
| n = (struct non_note *) xmalloc(sizeof(struct non_note)); |
| n->next = NULL; |
| n->path = xstrdup(path); |
| n->mode = mode; |
| hashcpy(n->sha1, sha1); |
| t->prev_non_note = n; |
| |
| if (!t->first_non_note) { |
| t->first_non_note = n; |
| return; |
| } |
| |
| if (non_note_cmp(p, n) < 0) |
| ; /* do nothing */ |
| else if (non_note_cmp(t->first_non_note, n) <= 0) |
| p = t->first_non_note; |
| else { |
| /* n sorts before t->first_non_note */ |
| n->next = t->first_non_note; |
| t->first_non_note = n; |
| return; |
| } |
| |
| /* n sorts equal or after p */ |
| while (p->next && non_note_cmp(p->next, n) <= 0) |
| p = p->next; |
| |
| if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ |
| assert(strcmp(p->path, n->path) == 0); |
| p->mode = n->mode; |
| hashcpy(p->sha1, n->sha1); |
| free(n); |
| t->prev_non_note = p; |
| return; |
| } |
| |
| /* n sorts between p and p->next */ |
| n->next = p->next; |
| p->next = n; |
| } |
| |
| static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
| struct int_node *node, unsigned int n) |
| { |
| unsigned char object_sha1[20]; |
| unsigned int prefix_len; |
| void *buf; |
| struct tree_desc desc; |
| struct name_entry entry; |
| int len, path_len; |
| unsigned char type; |
| struct leaf_node *l; |
| |
| buf = fill_tree_descriptor(&desc, subtree->val_sha1); |
| if (!buf) |
| die("Could not read %s for notes-index", |
| sha1_to_hex(subtree->val_sha1)); |
| |
| prefix_len = subtree->key_sha1[19]; |
| assert(prefix_len * 2 >= n); |
| memcpy(object_sha1, subtree->key_sha1, prefix_len); |
| while (tree_entry(&desc, &entry)) { |
| path_len = strlen(entry.path); |
| len = get_sha1_hex_segment(entry.path, path_len, |
| object_sha1 + prefix_len, 20 - prefix_len); |
| if (len < 0) |
| goto handle_non_note; /* entry.path is not a SHA1 */ |
| len += prefix_len; |
| |
| /* |
| * If object SHA1 is complete (len == 20), assume note object |
| * If object SHA1 is incomplete (len < 20), and current |
| * component consists of 2 hex chars, assume note subtree |
| */ |
| if (len <= 20) { |
| type = PTR_TYPE_NOTE; |
| l = (struct leaf_node *) |
| xcalloc(sizeof(struct leaf_node), 1); |
| hashcpy(l->key_sha1, object_sha1); |
| hashcpy(l->val_sha1, entry.sha1); |
| if (len < 20) { |
| if (!S_ISDIR(entry.mode) || path_len != 2) |
| goto handle_non_note; /* not subtree */ |
| l->key_sha1[19] = (unsigned char) len; |
| type = PTR_TYPE_SUBTREE; |
| } |
| note_tree_insert(t, node, n, l, type, |
| combine_notes_concatenate); |
| } |
| continue; |
| |
| handle_non_note: |
| /* |
| * Determine full path for this non-note entry: |
| * The filename is already found in entry.path, but the |
| * directory part of the path must be deduced from the subtree |
| * containing this entry. We assume here that the overall notes |
| * tree follows a strict byte-based progressive fanout |
| * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not |
| * e.g. 4/36 fanout). This means that if a non-note is found at |
| * path "dead/beef", the following code will register it as |
| * being found on "de/ad/beef". |
| * On the other hand, if you use such non-obvious non-note |
| * paths in the middle of a notes tree, you deserve what's |
| * coming to you ;). Note that for non-notes that are not |
| * SHA1-like at the top level, there will be no problems. |
| * |
| * To conclude, it is strongly advised to make sure non-notes |
| * have at least one non-hex character in the top-level path |
| * component. |
| */ |
| { |
| char non_note_path[PATH_MAX]; |
| char *p = non_note_path; |
| const char *q = sha1_to_hex(subtree->key_sha1); |
| int i; |
| for (i = 0; i < prefix_len; i++) { |
| *p++ = *q++; |
| *p++ = *q++; |
| *p++ = '/'; |
| } |
| strcpy(p, entry.path); |
| add_non_note(t, non_note_path, entry.mode, entry.sha1); |
| } |
| } |
| free(buf); |
| } |
| |
| /* |
| * Determine optimal on-disk fanout for this part of the notes tree |
| * |
| * Given a (sub)tree and the level in the internal tree structure, determine |
| * whether or not the given existing fanout should be expanded for this |
| * (sub)tree. |
| * |
| * Values of the 'fanout' variable: |
| * - 0: No fanout (all notes are stored directly in the root notes tree) |
| * - 1: 2/38 fanout |
| * - 2: 2/2/36 fanout |
| * - 3: 2/2/2/34 fanout |
| * etc. |
| */ |
| static unsigned char determine_fanout(struct int_node *tree, unsigned char n, |
| unsigned char fanout) |
| { |
| /* |
| * The following is a simple heuristic that works well in practice: |
| * For each even-numbered 16-tree level (remember that each on-disk |
| * fanout level corresponds to _two_ 16-tree levels), peek at all 16 |
| * entries at that tree level. If all of them are either int_nodes or |
| * subtree entries, then there are likely plenty of notes below this |
| * level, so we return an incremented fanout. |
| */ |
| unsigned int i; |
| if ((n % 2) || (n > 2 * fanout)) |
| return fanout; |
| for (i = 0; i < 16; i++) { |
| switch (GET_PTR_TYPE(tree->a[i])) { |
| case PTR_TYPE_SUBTREE: |
| case PTR_TYPE_INTERNAL: |
| continue; |
| default: |
| return fanout; |
| } |
| } |
| return fanout + 1; |
| } |
| |
| static void construct_path_with_fanout(const unsigned char *sha1, |
| unsigned char fanout, char *path) |
| { |
| unsigned int i = 0, j = 0; |
| const char *hex_sha1 = sha1_to_hex(sha1); |
| assert(fanout < 20); |
| while (fanout) { |
| path[i++] = hex_sha1[j++]; |
| path[i++] = hex_sha1[j++]; |
| path[i++] = '/'; |
| fanout--; |
| } |
| strcpy(path + i, hex_sha1 + j); |
| } |
| |
| static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, |
| unsigned char n, unsigned char fanout, int flags, |
| each_note_fn fn, void *cb_data) |
| { |
| unsigned int i; |
| void *p; |
| int ret = 0; |
| struct leaf_node *l; |
| static char path[40 + 19 + 1]; /* hex SHA1 + 19 * '/' + NUL */ |
| |
| fanout = determine_fanout(tree, n, fanout); |
| for (i = 0; i < 16; i++) { |
| redo: |
| p = tree->a[i]; |
| switch (GET_PTR_TYPE(p)) { |
| case PTR_TYPE_INTERNAL: |
| /* recurse into int_node */ |
| ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, |
| fanout, flags, fn, cb_data); |
| break; |
| case PTR_TYPE_SUBTREE: |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); |
| /* |
| * Subtree entries in the note tree represent parts of |
| * the note tree that have not yet been explored. There |
| * is a direct relationship between subtree entries at |
| * level 'n' in the tree, and the 'fanout' variable: |
| * Subtree entries at level 'n <= 2 * fanout' should be |
| * preserved, since they correspond exactly to a fanout |
| * directory in the on-disk structure. However, subtree |
| * entries at level 'n > 2 * fanout' should NOT be |
| * preserved, but rather consolidated into the above |
| * notes tree level. We achieve this by unconditionally |
| * unpacking subtree entries that exist below the |
| * threshold level at 'n = 2 * fanout'. |
| */ |
| if (n <= 2 * fanout && |
| flags & FOR_EACH_NOTE_YIELD_SUBTREES) { |
| /* invoke callback with subtree */ |
| unsigned int path_len = |
| l->key_sha1[19] * 2 + fanout; |
| assert(path_len < 40 + 19); |
| construct_path_with_fanout(l->key_sha1, fanout, |
| path); |
| /* Create trailing slash, if needed */ |
| if (path[path_len - 1] != '/') |
| path[path_len++] = '/'; |
| path[path_len] = '\0'; |
| ret = fn(l->key_sha1, l->val_sha1, path, |
| cb_data); |
| } |
| if (n > fanout * 2 || |
| !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { |
| /* unpack subtree and resume traversal */ |
| tree->a[i] = NULL; |
| load_subtree(t, l, tree, n); |
| free(l); |
| goto redo; |
| } |
| break; |
| case PTR_TYPE_NOTE: |
| l = (struct leaf_node *) CLR_PTR_TYPE(p); |
| construct_path_with_fanout(l->key_sha1, fanout, path); |
| ret = fn(l->key_sha1, l->val_sha1, path, cb_data); |
| break; |
| } |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| struct tree_write_stack { |
| struct tree_write_stack *next; |
| struct strbuf buf; |
| char path[2]; /* path to subtree in next, if any */ |
| }; |
| |
| static inline int matches_tree_write_stack(struct tree_write_stack *tws, |
| const char *full_path) |
| { |
| return full_path[0] == tws->path[0] && |
| full_path[1] == tws->path[1] && |
| full_path[2] == '/'; |
| } |
| |
| static void write_tree_entry(struct strbuf *buf, unsigned int mode, |
| const char *path, unsigned int path_len, const |
| unsigned char *sha1) |
| { |
| strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); |
| strbuf_add(buf, sha1, 20); |
| } |
| |
| static void tree_write_stack_init_subtree(struct tree_write_stack *tws, |
| const char *path) |
| { |
| struct tree_write_stack *n; |
| assert(!tws->next); |
| assert(tws->path[0] == '\0' && tws->path[1] == '\0'); |
| n = (struct tree_write_stack *) |
| xmalloc(sizeof(struct tree_write_stack)); |
| n->next = NULL; |
| strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */ |
| n->path[0] = n->path[1] = '\0'; |
| tws->next = n; |
| tws->path[0] = path[0]; |
| tws->path[1] = path[1]; |
| } |
| |
| static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) |
| { |
| int ret; |
| struct tree_write_stack *n = tws->next; |
| unsigned char s[20]; |
| if (n) { |
| ret = tree_write_stack_finish_subtree(n); |
| if (ret) |
| return ret; |
| ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s); |
| if (ret) |
| return ret; |
| strbuf_release(&n->buf); |
| free(n); |
| tws->next = NULL; |
| write_tree_entry(&tws->buf, 040000, tws->path, 2, s); |
| tws->path[0] = tws->path[1] = '\0'; |
| } |
| return 0; |
| } |
| |
| static int write_each_note_helper(struct tree_write_stack *tws, |
| const char *path, unsigned int mode, |
| const unsigned char *sha1) |
| { |
| size_t path_len = strlen(path); |
| unsigned int n = 0; |
| int ret; |
| |
| /* Determine common part of tree write stack */ |
| while (tws && 3 * n < path_len && |
| matches_tree_write_stack(tws, path + 3 * n)) { |
| n++; |
| tws = tws->next; |
| } |
| |
| /* tws point to last matching tree_write_stack entry */ |
| ret = tree_write_stack_finish_subtree(tws); |
| if (ret) |
| return ret; |
| |
| /* Start subtrees needed to satisfy path */ |
| while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { |
| tree_write_stack_init_subtree(tws, path + 3 * n); |
| n++; |
| tws = tws->next; |
| } |
| |
| /* There should be no more directory components in the given path */ |
| assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); |
| |
| /* Finally add given entry to the current tree object */ |
| write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), |
| sha1); |
| |
| return 0; |
| } |
| |
| struct write_each_note_data { |
| struct tree_write_stack *root; |
| struct non_note *next_non_note; |
| }; |
| |
| static int write_each_non_note_until(const char *note_path, |
| struct write_each_note_data *d) |
| { |
| struct non_note *n = d->next_non_note; |
| int cmp, ret; |
| while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { |
| if (note_path && cmp == 0) |
| ; /* do nothing, prefer note to non-note */ |
| else { |
| ret = write_each_note_helper(d->root, n->path, n->mode, |
| n->sha1); |
| if (ret) |
| return ret; |
| } |
| n = n->next; |
| } |
| d->next_non_note = n; |
| return 0; |
| } |
| |
| static int write_each_note(const unsigned char *object_sha1, |
| const unsigned char *note_sha1, char *note_path, |
| void *cb_data) |
| { |
| struct write_each_note_data *d = |
| (struct write_each_note_data *) cb_data; |
| size_t note_path_len = strlen(note_path); |
| unsigned int mode = 0100644; |
| |
| if (note_path[note_path_len - 1] == '/') { |
| /* subtree entry */ |
| note_path_len--; |
| note_path[note_path_len] = '\0'; |
| mode = 040000; |
| } |
| assert(note_path_len <= 40 + 19); |
| |
| /* Weave non-note entries into note entries */ |
| return write_each_non_note_until(note_path, d) || |
| write_each_note_helper(d->root, note_path, mode, note_sha1); |
| } |
| |
| struct note_delete_list { |
| struct note_delete_list *next; |
| const unsigned char *sha1; |
| }; |
| |
| static int prune_notes_helper(const unsigned char *object_sha1, |
| const unsigned char *note_sha1, char *note_path, |
| void *cb_data) |
| { |
| struct note_delete_list **l = (struct note_delete_list **) cb_data; |
| struct note_delete_list *n; |
| |
| if (has_sha1_file(object_sha1)) |
| return 0; /* nothing to do for this note */ |
| |
| /* failed to find object => prune this note */ |
| n = (struct note_delete_list *) xmalloc(sizeof(*n)); |
| n->next = *l; |
| n->sha1 = object_sha1; |
| *l = n; |
| return 0; |
| } |
| |
| int combine_notes_concatenate(unsigned char *cur_sha1, |
| const unsigned char *new_sha1) |
| { |
| char *cur_msg = NULL, *new_msg = NULL, *buf; |
| unsigned long cur_len, new_len, buf_len; |
| enum object_type cur_type, new_type; |
| int ret; |
| |
| /* read in both note blob objects */ |
| if (!is_null_sha1(new_sha1)) |
| new_msg = read_sha1_file(new_sha1, &new_type, &new_len); |
| if (!new_msg || !new_len || new_type != OBJ_BLOB) { |
| free(new_msg); |
| return 0; |
| } |
| if (!is_null_sha1(cur_sha1)) |
| cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len); |
| if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { |
| free(cur_msg); |
| free(new_msg); |
| hashcpy(cur_sha1, new_sha1); |
| return 0; |
| } |
| |
| /* we will separate the notes by a newline anyway */ |
| if (cur_msg[cur_len - 1] == '\n') |
| cur_len--; |
| |
| /* concatenate cur_msg and new_msg into buf */ |
| buf_len = cur_len + 1 + new_len; |
| buf = (char *) xmalloc(buf_len); |
| memcpy(buf, cur_msg, cur_len); |
| buf[cur_len] = '\n'; |
| memcpy(buf + cur_len + 1, new_msg, new_len); |
| free(cur_msg); |
| free(new_msg); |
| |
| /* create a new blob object from buf */ |
| ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1); |
| free(buf); |
| return ret; |
| } |
| |
| int combine_notes_overwrite(unsigned char *cur_sha1, |
| const unsigned char *new_sha1) |
| { |
| hashcpy(cur_sha1, new_sha1); |
| return 0; |
| } |
| |
| int combine_notes_ignore(unsigned char *cur_sha1, |
| const unsigned char *new_sha1) |
| { |
| return 0; |
| } |
| |
| static int string_list_add_one_ref(const char *path, const unsigned char *sha1, |
| int flag, void *cb) |
| { |
| struct string_list *refs = cb; |
| if (!unsorted_string_list_has_string(refs, path)) |
| string_list_append(path, refs); |
| return 0; |
| } |
| |
| void string_list_add_refs_by_glob(struct string_list *list, const char *glob) |
| { |
| if (has_glob_specials(glob)) { |
| for_each_glob_ref(string_list_add_one_ref, glob, list); |
| } else { |
| unsigned char sha1[20]; |
| if (get_sha1(glob, sha1)) |
| warning("notes ref %s is invalid", glob); |
| if (!unsorted_string_list_has_string(list, glob)) |
| string_list_append(glob, list); |
| } |
| } |
| |
| void string_list_add_refs_from_colon_sep(struct string_list *list, |
| const char *globs) |
| { |
| struct strbuf globbuf = STRBUF_INIT; |
| struct strbuf **split; |
| int i; |
| |
| strbuf_addstr(&globbuf, globs); |
| split = strbuf_split(&globbuf, ':'); |
| |
| for (i = 0; split[i]; i++) { |
| if (!split[i]->len) |
| continue; |
| if (split[i]->buf[split[i]->len-1] == ':') |
| strbuf_setlen(split[i], split[i]->len-1); |
| string_list_add_refs_by_glob(list, split[i]->buf); |
| } |
| |
| strbuf_list_free(split); |
| strbuf_release(&globbuf); |
| } |
| |
| static int string_list_add_refs_from_list(struct string_list_item *item, |
| void *cb) |
| { |
| struct string_list *list = cb; |
| string_list_add_refs_by_glob(list, item->string); |
| return 0; |
| } |
| |
| static int notes_display_config(const char *k, const char *v, void *cb) |
| { |
| int *load_refs = cb; |
| |
| if (*load_refs && !strcmp(k, "notes.displayref")) { |
| if (!v) |
| config_error_nonbool(k); |
| string_list_add_refs_by_glob(&display_notes_refs, v); |
| } |
| |
| return 0; |
| } |
| |
| static const char *default_notes_ref(void) |
| { |
| const char *notes_ref = NULL; |
| if (!notes_ref) |
| notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT); |
| if (!notes_ref) |
| notes_ref = notes_ref_name; /* value of core.notesRef config */ |
| if (!notes_ref) |
| notes_ref = GIT_NOTES_DEFAULT_REF; |
| return notes_ref; |
| } |
| |
| void init_notes(struct notes_tree *t, const char *notes_ref, |
| combine_notes_fn combine_notes, int flags) |
| { |
| unsigned char sha1[20], object_sha1[20]; |
| unsigned mode; |
| struct leaf_node root_tree; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(!t->initialized); |
| |
| if (!notes_ref) |
| notes_ref = default_notes_ref(); |
| |
| if (!combine_notes) |
| combine_notes = combine_notes_concatenate; |
| |
| t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1); |
| t->first_non_note = NULL; |
| t->prev_non_note = NULL; |
| t->ref = notes_ref ? xstrdup(notes_ref) : NULL; |
| t->combine_notes = combine_notes; |
| t->initialized = 1; |
| t->dirty = 0; |
| |
| if (flags & NOTES_INIT_EMPTY || !notes_ref || |
| read_ref(notes_ref, object_sha1)) |
| return; |
| if (get_tree_entry(object_sha1, "", sha1, &mode)) |
| die("Failed to read notes tree referenced by %s (%s)", |
| notes_ref, object_sha1); |
| |
| hashclr(root_tree.key_sha1); |
| hashcpy(root_tree.val_sha1, sha1); |
| load_subtree(t, &root_tree, t->root, 0); |
| } |
| |
| struct load_notes_cb_data { |
| int counter; |
| struct notes_tree **trees; |
| }; |
| |
| static int load_one_display_note_ref(struct string_list_item *item, |
| void *cb_data) |
| { |
| struct load_notes_cb_data *c = cb_data; |
| struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); |
| init_notes(t, item->string, combine_notes_ignore, 0); |
| c->trees[c->counter++] = t; |
| return 0; |
| } |
| |
| struct notes_tree **load_notes_trees(struct string_list *refs) |
| { |
| struct notes_tree **trees; |
| struct load_notes_cb_data cb_data; |
| trees = xmalloc((refs->nr+1) * sizeof(struct notes_tree *)); |
| cb_data.counter = 0; |
| cb_data.trees = trees; |
| for_each_string_list(load_one_display_note_ref, refs, &cb_data); |
| trees[cb_data.counter] = NULL; |
| return trees; |
| } |
| |
| void init_display_notes(struct display_notes_opt *opt) |
| { |
| char *display_ref_env; |
| int load_config_refs = 0; |
| display_notes_refs.strdup_strings = 1; |
| |
| assert(!display_notes_trees); |
| |
| if (!opt || !opt->suppress_default_notes) { |
| string_list_append(default_notes_ref(), &display_notes_refs); |
| display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); |
| if (display_ref_env) { |
| string_list_add_refs_from_colon_sep(&display_notes_refs, |
| display_ref_env); |
| load_config_refs = 0; |
| } else |
| load_config_refs = 1; |
| } |
| |
| git_config(notes_display_config, &load_config_refs); |
| |
| if (opt && opt->extra_notes_refs) |
| for_each_string_list(string_list_add_refs_from_list, |
| opt->extra_notes_refs, |
| &display_notes_refs); |
| |
| display_notes_trees = load_notes_trees(&display_notes_refs); |
| string_list_clear(&display_notes_refs, 0); |
| } |
| |
| void add_note(struct notes_tree *t, const unsigned char *object_sha1, |
| const unsigned char *note_sha1, combine_notes_fn combine_notes) |
| { |
| struct leaf_node *l; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| t->dirty = 1; |
| if (!combine_notes) |
| combine_notes = t->combine_notes; |
| l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); |
| hashcpy(l->key_sha1, object_sha1); |
| hashcpy(l->val_sha1, note_sha1); |
| note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); |
| } |
| |
| void remove_note(struct notes_tree *t, const unsigned char *object_sha1) |
| { |
| struct leaf_node l; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| t->dirty = 1; |
| hashcpy(l.key_sha1, object_sha1); |
| hashclr(l.val_sha1); |
| note_tree_remove(t, t->root, 0, &l); |
| } |
| |
| const unsigned char *get_note(struct notes_tree *t, |
| const unsigned char *object_sha1) |
| { |
| struct leaf_node *found; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| found = note_tree_find(t, t->root, 0, object_sha1); |
| return found ? found->val_sha1 : NULL; |
| } |
| |
| int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, |
| void *cb_data) |
| { |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); |
| } |
| |
| int write_notes_tree(struct notes_tree *t, unsigned char *result) |
| { |
| struct tree_write_stack root; |
| struct write_each_note_data cb_data; |
| int ret; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| |
| /* Prepare for traversal of current notes tree */ |
| root.next = NULL; /* last forward entry in list is grounded */ |
| strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */ |
| root.path[0] = root.path[1] = '\0'; |
| cb_data.root = &root; |
| cb_data.next_non_note = t->first_non_note; |
| |
| /* Write tree objects representing current notes tree */ |
| ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | |
| FOR_EACH_NOTE_YIELD_SUBTREES, |
| write_each_note, &cb_data) || |
| write_each_non_note_until(NULL, &cb_data) || |
| tree_write_stack_finish_subtree(&root) || |
| write_sha1_file(root.buf.buf, root.buf.len, tree_type, result); |
| strbuf_release(&root.buf); |
| return ret; |
| } |
| |
| void prune_notes(struct notes_tree *t, int flags) |
| { |
| struct note_delete_list *l = NULL; |
| |
| if (!t) |
| t = &default_notes_tree; |
| assert(t->initialized); |
| |
| for_each_note(t, 0, prune_notes_helper, &l); |
| |
| while (l) { |
| if (flags & NOTES_PRUNE_VERBOSE) |
| printf("%s\n", sha1_to_hex(l->sha1)); |
| if (!(flags & NOTES_PRUNE_DRYRUN)) |
| remove_note(t, l->sha1); |
| l = l->next; |
| } |
| } |
| |
| void free_notes(struct notes_tree *t) |
| { |
| if (!t) |
| t = &default_notes_tree; |
| if (t->root) |
| note_tree_free(t->root); |
| free(t->root); |
| while (t->first_non_note) { |
| t->prev_non_note = t->first_non_note->next; |
| free(t->first_non_note->path); |
| free(t->first_non_note); |
| t->first_non_note = t->prev_non_note; |
| } |
| free(t->ref); |
| memset(t, 0, sizeof(struct notes_tree)); |
| } |
| |
| void format_note(struct notes_tree *t, const unsigned char *object_sha1, |
| struct strbuf *sb, const char *output_encoding, int flags) |
| { |
| static const char utf8[] = "utf-8"; |
| const unsigned char *sha1; |
| char *msg, *msg_p; |
| unsigned long linelen, msglen; |
| enum object_type type; |
| |
| if (!t) |
| t = &default_notes_tree; |
| if (!t->initialized) |
| init_notes(t, NULL, NULL, 0); |
| |
| sha1 = get_note(t, object_sha1); |
| if (!sha1) |
| return; |
| |
| if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen || |
| type != OBJ_BLOB) { |
| free(msg); |
| return; |
| } |
| |
| if (output_encoding && *output_encoding && |
| strcmp(utf8, output_encoding)) { |
| char *reencoded = reencode_string(msg, output_encoding, utf8); |
| if (reencoded) { |
| free(msg); |
| msg = reencoded; |
| msglen = strlen(msg); |
| } |
| } |
| |
| /* we will end the annotation by a newline anyway */ |
| if (msglen && msg[msglen - 1] == '\n') |
| msglen--; |
| |
| if (flags & NOTES_SHOW_HEADER) { |
| const char *ref = t->ref; |
| if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { |
| strbuf_addstr(sb, "\nNotes:\n"); |
| } else { |
| if (!prefixcmp(ref, "refs/")) |
| ref += 5; |
| if (!prefixcmp(ref, "notes/")) |
| ref += 6; |
| strbuf_addf(sb, "\nNotes (%s):\n", ref); |
| } |
| } |
| |
| for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { |
| linelen = strchrnul(msg_p, '\n') - msg_p; |
| |
| if (flags & NOTES_INDENT) |
| strbuf_addstr(sb, " "); |
| strbuf_add(sb, msg_p, linelen); |
| strbuf_addch(sb, '\n'); |
| } |
| |
| free(msg); |
| } |
| |
| void format_display_notes(const unsigned char *object_sha1, |
| struct strbuf *sb, const char *output_encoding, int flags) |
| { |
| int i; |
| assert(display_notes_trees); |
| for (i = 0; display_notes_trees[i]; i++) |
| format_note(display_notes_trees[i], object_sha1, sb, |
| output_encoding, flags); |
| } |
| |
| int copy_note(struct notes_tree *t, |
| const unsigned char *from_obj, const unsigned char *to_obj, |
| int force, combine_notes_fn combine_fn) |
| { |
| const unsigned char *note = get_note(t, from_obj); |
| const unsigned char *existing_note = get_note(t, to_obj); |
| |
| if (!force && existing_note) |
| return 1; |
| |
| if (note) |
| add_note(t, to_obj, note, combine_fn); |
| else if (existing_note) |
| add_note(t, to_obj, null_sha1, combine_fn); |
| |
| return 0; |
| } |