commit | f1c903debdcbf6aaf8fd3abf222fa941b42d5d31 | [log] [tgz] |
---|---|---|
author | Ævar Arnfjörð Bjarmason <avarab@gmail.com> | Tue Nov 01 23:35:50 2022 +0100 |
committer | Taylor Blau <me@ttaylorr.com> | Wed Nov 02 21:22:16 2022 -0400 |
tree | c501328fd566e7d6eb504bb40ee10be9c765f792 | |
parent | 60cfad9cbe93457dd4afde1798a98bfde73855a1 [diff] |
cocci: make "coccicheck" rule incremental Optimize the very slow "coccicheck" target to take advantage of incremental rebuilding, and fix outstanding dependency problems with the existing rule. The rule is now faster both on the initial run as we can make better use of GNU make's parallelism than the old ad-hoc combination of make's parallelism combined with $(SPATCH_BATCH_SIZE) and/or the "--jobs" argument to "spatch(1)". It also makes us *much* faster when incrementally building, it's now viable to "make coccicheck" as topic branches are merged down. The rule didn't use FORCE (or its equivalents) before, so a: make coccicheck make coccicheck Would report nothing to do on the second iteration. But all of our patch output depended on all $(COCCI_SOURCES) files, therefore e.g.: make -W grep.c coccicheck Would do a full re-run, i.e. a a change in a single file would force us to do a full re-run. The reason for this (not the initial rationale, but my analysis) is: * Since we create a single "*.cocci.patch+" we don't know where to pick up where we left off, or how to incrementally merge e.g. a "grep.c" change with an existing *.cocci.patch. * We've been carrying forward the dependency on the *.c files since 63f0a758a06 (add coccicheck make target, 2016-09-15) the rule was initially added as a sort of poor man's dependency discovery. As we don't include other *.c files depending on other *.c files has always been broken, as could be trivially demonstrated e.g. with: make coccicheck make -W strbuf.h coccicheck However, depending on the corresponding *.c files has been doing something, namely that *if* an API change modified both *.c and *.h files we'd catch the change to the *.h we care about via the *.c being changed. For API changes that happened only via *.h files we'd do the wrong thing before this change, but e.g. for function additions (not "static inline" ones) catch the *.h change by proxy. Now we'll instead: * Create a <RULE>/<FILE> pair in the .build directory, E.g. for swap.cocci and grep.c we'll create .build/contrib/coccinelle/swap.cocci.patch/grep.c. That file is the diff we'll apply for that <RULE>-<FILE> combination, if there's no changes to me made (the common case) it'll be an empty file. * Our generated *.patch file (e.g. contrib/coccinelle/swap.cocci.patch) is now a simple "cat $^" of all of all of the <RULE>/<FILE> files for a given <RULE>. In the case discussed above of "grep.c" being changed we'll do the full "cat" every time, so they resulting *.cocci.patch will always be correct and up-to-date, even if it's "incrementally updated". See 1cc0425a27c (Makefile: have "make pot" not "reset --hard", 2022-05-26) for another recent rule that used that technique. As before we'll: * End up generating a contrib/coccinelle/swap.cocci.patch, if we "fail" by creating a non-empty patch we'll still exit with a zero exit code. Arguably we should move to a more Makefile-native way of doing this, i.e. fail early, and if we want all of the "failed" changes we can use "make -k", but as the current "ci/run-static-analysis.sh" expects us to behave this way let's keep the existing behavior of exhaustively discovering all cocci changes, and only failing if spatch itself errors out. Further implementation details & notes: * Before this change running "make coccicheck" would by default end up pegging just one CPU at the very end for a while, usually as we'd finish whichever *.cocci rule was the most expensive. This could be mitigated by combining "make -jN" with SPATCH_BATCH_SIZE, see 960154b9c17 (coccicheck: optionally batch spatch invocations, 2019-05-06). There will be cases where getting rid of "SPATCH_BATCH_SIZE" makes things worse, but a from-scratch "make coccicheck" with the default of SPATCH_BATCH_SIZE=1 (and tweaking it doesn't make a difference) is faster (~3m36s v.s. ~3m56s) with this approach, as we can feed the CPU more work in a less staggered way. * Getting rid of "SPATCH_BATCH_SIZE" particularly helps in cases where the default of 1 yields parallelism under "make coccicheck", but then running e.g.: make -W contrib/coccinelle/swap.cocci coccicheck I.e. before that would use only one CPU core, until the user remembered to adjust "SPATCH_BATCH_SIZE" differently than the setting that makes sense when doing a non-incremental run of "make coccicheck". * Before the "make coccicheck" rule would have to clean "contrib/coccinelle/*.cocci.patch*", since we'd create "*+" and "*.log" files there. Now those are created in .build/contrib/coccinelle/, which is covered by the "cocciclean" rule already. Outstanding issues & future work: * We could get rid of "--all-includes" in favor of manually specifying a list of includes to give to "spatch(1)". As noted upthread of [1] a naïve removal of "--all-includes" will result in broken *.cocci patches, but if we know the exhaustive list of includes via COMPUTE_HEADER_DEPENDENCIES we don't need to re-scan for them, we could grab the headers to include from the .depend.d/<file>.o.d and supply them with the "--include" option to spatch(1).q 1. https://lore.kernel.org/git/87ft18tcog.fsf@evledraar.gmail.com/ Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Taylor Blau <me@ttaylorr.com>
Git is a fast, scalable, distributed revision control system with an unusually rich command set that provides both high-level operations and full access to internals.
Git is an Open Source project covered by the GNU General Public License version 2 (some parts of it are under different licenses, compatible with the GPLv2). It was originally written by Linus Torvalds with help of a group of hackers around the net.
Please read the file INSTALL for installation instructions.
Many Git online resources are accessible from https://git-scm.com/ including full documentation and Git related tools.
See Documentation/gittutorial.txt to get started, then see Documentation/giteveryday.txt for a useful minimum set of commands, and Documentation/git-<commandname>.txt
for documentation of each command. If git has been correctly installed, then the tutorial can also be read with man gittutorial
or git help tutorial
, and the documentation of each command with man git-<commandname>
or git help <commandname>
.
CVS users may also want to read Documentation/gitcvs-migration.txt (man gitcvs-migration
or git help cvs-migration
if git is installed).
The user discussion and development of Git take place on the Git mailing list -- everyone is welcome to post bug reports, feature requests, comments and patches to git@vger.kernel.org (read Documentation/SubmittingPatches for instructions on patch submission and Documentation/CodingGuidelines).
Those wishing to help with error message, usage and informational message string translations (localization l10) should see po/README.md (a po
file is a Portable Object file that holds the translations).
To subscribe to the list, send an email with just “subscribe git” in the body to majordomo@vger.kernel.org (not the Git list). The mailing list archives are available at https://lore.kernel.org/git/, http://marc.info/?l=git and other archival sites.
Issues which are security relevant should be disclosed privately to the Git Security mailing list git-security@googlegroups.com.
The maintainer frequently sends the “What's cooking” reports that list the current status of various development topics to the mailing list. The discussion following them give a good reference for project status, development direction and remaining tasks.
The name “git” was given by Linus Torvalds when he wrote the very first version. He described the tool as “the stupid content tracker” and the name as (depending on your mood):