commit | dbcf611617cc21560d2887e92aaa756f8fd681d8 | [log] [tgz] |
---|---|---|
author | Taylor Blau <me@ttaylorr.com> | Wed Apr 12 18:20:30 2023 -0400 |
committer | Junio C Hamano <gitster@pobox.com> | Thu Apr 13 07:55:46 2023 -0700 |
tree | 5085ccf528251c25be961e92fff13037270f26a9 | |
parent | 2a250d6165deee97dd7d8641096b93b85fa95287 [diff] |
pack-revindex: introduce `pack.readReverseIndex` Since 1615c567b8 (Documentation/config/pack.txt: advertise 'pack.writeReverseIndex', 2021-01-25), we have had the `pack.writeReverseIndex` configuration option, which tells Git whether or not it is allowed to write a ".rev" file when indexing a pack. Introduce a complementary configuration knob, `pack.readReverseIndex` to control whether or not Git will read any ".rev" file(s) that may be available on disk. This option is useful for debugging, as well as disabling the effect of ".rev" files in certain instances. This is useful because of the trade-off[^1] between the time it takes to generate a reverse index (slow from scratch, fast when reading an existing ".rev" file), and the time it takes to access a record (the opposite). For example, even though it is faster to use the on-disk reverse index when computing the on-disk size of a packed object, it is slower to enumerate the same value for all objects. Here are a couple of examples from linux.git. When computing the above for a single object, using the on-disk reverse index is significantly faster: $ git rev-parse HEAD >in $ hyperfine -L v false,true 'git.compile -c pack.readReverseIndex={v} cat-file --batch-check="%(objectsize:disk)" <in' Benchmark 1: git.compile -c pack.readReverseIndex=false cat-file --batch-check="%(objectsize:disk)" <in Time (mean ± σ): 302.5 ms ± 12.5 ms [User: 258.7 ms, System: 43.6 ms] Range (min … max): 291.1 ms … 328.1 ms 10 runs Benchmark 2: git.compile -c pack.readReverseIndex=true cat-file --batch-check="%(objectsize:disk)" <in Time (mean ± σ): 3.9 ms ± 0.3 ms [User: 1.6 ms, System: 2.4 ms] Range (min … max): 2.0 ms … 4.4 ms 801 runs Summary 'git.compile -c pack.readReverseIndex=true cat-file --batch-check="%(objectsize:disk)" <in' ran 77.29 ± 7.14 times faster than 'git.compile -c pack.readReverseIndex=false cat-file --batch-check="%(objectsize:disk)" <in' , but when instead trying to compute the on-disk object size for all objects in the repository, using the ".rev" file is a disadvantage over creating the reverse index from scratch: $ hyperfine -L v false,true 'git.compile -c pack.readReverseIndex={v} cat-file --batch-check="%(objectsize:disk)" --batch-all-objects' Benchmark 1: git.compile -c pack.readReverseIndex=false cat-file --batch-check="%(objectsize:disk)" --batch-all-objects Time (mean ± σ): 8.258 s ± 0.035 s [User: 7.949 s, System: 0.308 s] Range (min … max): 8.199 s … 8.293 s 10 runs Benchmark 2: git.compile -c pack.readReverseIndex=true cat-file --batch-check="%(objectsize:disk)" --batch-all-objects Time (mean ± σ): 16.976 s ± 0.107 s [User: 16.706 s, System: 0.268 s] Range (min … max): 16.839 s … 17.105 s 10 runs Summary 'git.compile -c pack.readReverseIndex=false cat-file --batch-check="%(objectsize:disk)" --batch-all-objects' ran 2.06 ± 0.02 times faster than 'git.compile -c pack.readReverseIndex=true cat-file --batch-check="%(objectsize:disk)" --batch-all-objects' Luckily, the results when running `git cat-file` with `--unordered` are closer together: $ hyperfine -L v false,true 'git.compile -c pack.readReverseIndex={v} cat-file --unordered --batch-check="%(objectsize:disk)" --batch-all-objects' Benchmark 1: git.compile -c pack.readReverseIndex=false cat-file --unordered --batch-check="%(objectsize:disk)" --batch-all-objects Time (mean ± σ): 5.066 s ± 0.105 s [User: 4.792 s, System: 0.274 s] Range (min … max): 4.943 s … 5.220 s 10 runs Benchmark 2: git.compile -c pack.readReverseIndex=true cat-file --unordered --batch-check="%(objectsize:disk)" --batch-all-objects Time (mean ± σ): 6.193 s ± 0.069 s [User: 5.937 s, System: 0.255 s] Range (min … max): 6.145 s … 6.356 s 10 runs Summary 'git.compile -c pack.readReverseIndex=false cat-file --unordered --batch-check="%(objectsize:disk)" --batch-all-objects' ran 1.22 ± 0.03 times faster than 'git.compile -c pack.readReverseIndex=true cat-file --unordered --batch-check="%(objectsize:disk)" --batch-all-objects' Because the equilibrium point between these two is highly machine- and repository-dependent, allow users to configure whether or not they will read any ".rev" file(s) with this configuration knob. [^1]: Generating a reverse index in memory takes O(N) time (where N is the number of objects in the repository), since we use a radix sort. Reading an entry from an on-disk ".rev" file is slower since each operation is bound by disk I/O instead of memory I/O. In order to compute the on-disk size of a packed object, we need to find the offset of our object, and the adjacent object (the on-disk size difference of these two). Finding the first offset requires a binary search. Finding the latter involves a single .rev lookup. Signed-off-by: Taylor Blau <me@ttaylorr.com> Acked-by: Derrick Stolee <derrickstolee@github.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
Git is a fast, scalable, distributed revision control system with an unusually rich command set that provides both high-level operations and full access to internals.
Git is an Open Source project covered by the GNU General Public License version 2 (some parts of it are under different licenses, compatible with the GPLv2). It was originally written by Linus Torvalds with help of a group of hackers around the net.
Please read the file INSTALL for installation instructions.
Many Git online resources are accessible from https://git-scm.com/ including full documentation and Git related tools.
See Documentation/gittutorial.txt to get started, then see Documentation/giteveryday.txt for a useful minimum set of commands, and Documentation/git-<commandname>.txt
for documentation of each command. If git has been correctly installed, then the tutorial can also be read with man gittutorial
or git help tutorial
, and the documentation of each command with man git-<commandname>
or git help <commandname>
.
CVS users may also want to read Documentation/gitcvs-migration.txt (man gitcvs-migration
or git help cvs-migration
if git is installed).
The user discussion and development of Git take place on the Git mailing list -- everyone is welcome to post bug reports, feature requests, comments and patches to git@vger.kernel.org (read Documentation/SubmittingPatches for instructions on patch submission and Documentation/CodingGuidelines).
Those wishing to help with error message, usage and informational message string translations (localization l10) should see po/README.md (a po
file is a Portable Object file that holds the translations).
To subscribe to the list, send an email with just “subscribe git” in the body to majordomo@vger.kernel.org (not the Git list). The mailing list archives are available at https://lore.kernel.org/git/, http://marc.info/?l=git and other archival sites.
Issues which are security relevant should be disclosed privately to the Git Security mailing list git-security@googlegroups.com.
The maintainer frequently sends the “What's cooking” reports that list the current status of various development topics to the mailing list. The discussion following them give a good reference for project status, development direction and remaining tasks.
The name “git” was given by Linus Torvalds when he wrote the very first version. He described the tool as “the stupid content tracker” and the name as (depending on your mood):