| /* |
| * name-hash.c |
| * |
| * Hashing names in the index state |
| * |
| * Copyright (C) 2008 Linus Torvalds |
| */ |
| #include "cache.h" |
| #include "thread-utils.h" |
| |
| struct dir_entry { |
| struct hashmap_entry ent; |
| struct dir_entry *parent; |
| int nr; |
| unsigned int namelen; |
| char name[FLEX_ARRAY]; |
| }; |
| |
| static int dir_entry_cmp(const void *unused_cmp_data, |
| const void *entry, |
| const void *entry_or_key, |
| const void *keydata) |
| { |
| const struct dir_entry *e1 = entry; |
| const struct dir_entry *e2 = entry_or_key; |
| const char *name = keydata; |
| |
| return e1->namelen != e2->namelen || strncasecmp(e1->name, |
| name ? name : e2->name, e1->namelen); |
| } |
| |
| static struct dir_entry *find_dir_entry__hash(struct index_state *istate, |
| const char *name, unsigned int namelen, unsigned int hash) |
| { |
| struct dir_entry key; |
| hashmap_entry_init(&key, hash); |
| key.namelen = namelen; |
| return hashmap_get(&istate->dir_hash, &key, name); |
| } |
| |
| static struct dir_entry *find_dir_entry(struct index_state *istate, |
| const char *name, unsigned int namelen) |
| { |
| return find_dir_entry__hash(istate, name, namelen, memihash(name, namelen)); |
| } |
| |
| static struct dir_entry *hash_dir_entry(struct index_state *istate, |
| struct cache_entry *ce, int namelen) |
| { |
| /* |
| * Throw each directory component in the hash for quick lookup |
| * during a git status. Directory components are stored without their |
| * closing slash. Despite submodules being a directory, they never |
| * reach this point, because they are stored |
| * in index_state.name_hash (as ordinary cache_entries). |
| */ |
| struct dir_entry *dir; |
| |
| /* get length of parent directory */ |
| while (namelen > 0 && !is_dir_sep(ce->name[namelen - 1])) |
| namelen--; |
| if (namelen <= 0) |
| return NULL; |
| namelen--; |
| |
| /* lookup existing entry for that directory */ |
| dir = find_dir_entry(istate, ce->name, namelen); |
| if (!dir) { |
| /* not found, create it and add to hash table */ |
| FLEX_ALLOC_MEM(dir, name, ce->name, namelen); |
| hashmap_entry_init(dir, memihash(ce->name, namelen)); |
| dir->namelen = namelen; |
| hashmap_add(&istate->dir_hash, dir); |
| |
| /* recursively add missing parent directories */ |
| dir->parent = hash_dir_entry(istate, ce, namelen); |
| } |
| return dir; |
| } |
| |
| static void add_dir_entry(struct index_state *istate, struct cache_entry *ce) |
| { |
| /* Add reference to the directory entry (and parents if 0). */ |
| struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); |
| while (dir && !(dir->nr++)) |
| dir = dir->parent; |
| } |
| |
| static void remove_dir_entry(struct index_state *istate, struct cache_entry *ce) |
| { |
| /* |
| * Release reference to the directory entry. If 0, remove and continue |
| * with parent directory. |
| */ |
| struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); |
| while (dir && !(--dir->nr)) { |
| struct dir_entry *parent = dir->parent; |
| hashmap_remove(&istate->dir_hash, dir, NULL); |
| free(dir); |
| dir = parent; |
| } |
| } |
| |
| static void hash_index_entry(struct index_state *istate, struct cache_entry *ce) |
| { |
| if (ce->ce_flags & CE_HASHED) |
| return; |
| ce->ce_flags |= CE_HASHED; |
| hashmap_entry_init(ce, memihash(ce->name, ce_namelen(ce))); |
| hashmap_add(&istate->name_hash, ce); |
| |
| if (ignore_case) |
| add_dir_entry(istate, ce); |
| } |
| |
| static int cache_entry_cmp(const void *unused_cmp_data, |
| const void *entry, |
| const void *entry_or_key, |
| const void *remove) |
| { |
| const struct cache_entry *ce1 = entry; |
| const struct cache_entry *ce2 = entry_or_key; |
| /* |
| * For remove_name_hash, find the exact entry (pointer equality); for |
| * index_file_exists, find all entries with matching hash code and |
| * decide whether the entry matches in same_name. |
| */ |
| return remove ? !(ce1 == ce2) : 0; |
| } |
| |
| static int lazy_try_threaded = 1; |
| static int lazy_nr_dir_threads; |
| |
| /* |
| * Set a minimum number of cache_entries that we will handle per |
| * thread and use that to decide how many threads to run (upto |
| * the number on the system). |
| * |
| * For guidance setting the lower per-thread bound, see: |
| * t/helper/test-lazy-init-name-hash --analyze |
| */ |
| #define LAZY_THREAD_COST (2000) |
| |
| /* |
| * We use n mutexes to guard n partitions of the "istate->dir_hash" |
| * hashtable. Since "find" and "insert" operations will hash to a |
| * particular bucket and modify/search a single chain, we can say |
| * that "all chains mod n" are guarded by the same mutex -- rather |
| * than having a single mutex to guard the entire table. (This does |
| * require that we disable "rehashing" on the hashtable.) |
| * |
| * So, a larger value here decreases the probability of a collision |
| * and the time that each thread must wait for the mutex. |
| */ |
| #define LAZY_MAX_MUTEX (32) |
| |
| static pthread_mutex_t *lazy_dir_mutex_array; |
| |
| /* |
| * An array of lazy_entry items is used by the n threads in |
| * the directory parse (first) phase to (lock-free) store the |
| * intermediate results. These values are then referenced by |
| * the 2 threads in the second phase. |
| */ |
| struct lazy_entry { |
| struct dir_entry *dir; |
| unsigned int hash_dir; |
| unsigned int hash_name; |
| }; |
| |
| /* |
| * Decide if we want to use threads (if available) to load |
| * the hash tables. We set "lazy_nr_dir_threads" to zero when |
| * it is not worth it. |
| */ |
| static int lookup_lazy_params(struct index_state *istate) |
| { |
| int nr_cpus; |
| |
| lazy_nr_dir_threads = 0; |
| |
| if (!lazy_try_threaded) |
| return 0; |
| |
| /* |
| * If we are respecting case, just use the original |
| * code to build the "istate->name_hash". We don't |
| * need the complexity here. |
| */ |
| if (!ignore_case) |
| return 0; |
| |
| nr_cpus = online_cpus(); |
| if (nr_cpus < 2) |
| return 0; |
| |
| if (istate->cache_nr < 2 * LAZY_THREAD_COST) |
| return 0; |
| |
| if (istate->cache_nr < nr_cpus * LAZY_THREAD_COST) |
| nr_cpus = istate->cache_nr / LAZY_THREAD_COST; |
| lazy_nr_dir_threads = nr_cpus; |
| return lazy_nr_dir_threads; |
| } |
| |
| /* |
| * Initialize n mutexes for use when searching and inserting |
| * into "istate->dir_hash". All "dir" threads are trying |
| * to insert partial pathnames into the hash as they iterate |
| * over their portions of the index, so lock contention is |
| * high. |
| * |
| * However, the hashmap is going to put items into bucket |
| * chains based on their hash values. Use that to create n |
| * mutexes and lock on mutex[bucket(hash) % n]. This will |
| * decrease the collision rate by (hopefully) by a factor of n. |
| */ |
| static void init_dir_mutex(void) |
| { |
| int j; |
| |
| lazy_dir_mutex_array = xcalloc(LAZY_MAX_MUTEX, sizeof(pthread_mutex_t)); |
| |
| for (j = 0; j < LAZY_MAX_MUTEX; j++) |
| init_recursive_mutex(&lazy_dir_mutex_array[j]); |
| } |
| |
| static void cleanup_dir_mutex(void) |
| { |
| int j; |
| |
| for (j = 0; j < LAZY_MAX_MUTEX; j++) |
| pthread_mutex_destroy(&lazy_dir_mutex_array[j]); |
| |
| free(lazy_dir_mutex_array); |
| } |
| |
| static void lock_dir_mutex(int j) |
| { |
| pthread_mutex_lock(&lazy_dir_mutex_array[j]); |
| } |
| |
| static void unlock_dir_mutex(int j) |
| { |
| pthread_mutex_unlock(&lazy_dir_mutex_array[j]); |
| } |
| |
| static inline int compute_dir_lock_nr( |
| const struct hashmap *map, |
| unsigned int hash) |
| { |
| return hashmap_bucket(map, hash) % LAZY_MAX_MUTEX; |
| } |
| |
| static struct dir_entry *hash_dir_entry_with_parent_and_prefix( |
| struct index_state *istate, |
| struct dir_entry *parent, |
| struct strbuf *prefix) |
| { |
| struct dir_entry *dir; |
| unsigned int hash; |
| int lock_nr; |
| |
| /* |
| * Either we have a parent directory and path with slash(es) |
| * or the directory is an immediate child of the root directory. |
| */ |
| assert((parent != NULL) ^ (strchr(prefix->buf, '/') == NULL)); |
| |
| if (parent) |
| hash = memihash_cont(parent->ent.hash, |
| prefix->buf + parent->namelen, |
| prefix->len - parent->namelen); |
| else |
| hash = memihash(prefix->buf, prefix->len); |
| |
| lock_nr = compute_dir_lock_nr(&istate->dir_hash, hash); |
| lock_dir_mutex(lock_nr); |
| |
| dir = find_dir_entry__hash(istate, prefix->buf, prefix->len, hash); |
| if (!dir) { |
| FLEX_ALLOC_MEM(dir, name, prefix->buf, prefix->len); |
| hashmap_entry_init(dir, hash); |
| dir->namelen = prefix->len; |
| dir->parent = parent; |
| hashmap_add(&istate->dir_hash, dir); |
| |
| if (parent) { |
| unlock_dir_mutex(lock_nr); |
| |
| /* All I really need here is an InterlockedIncrement(&(parent->nr)) */ |
| lock_nr = compute_dir_lock_nr(&istate->dir_hash, parent->ent.hash); |
| lock_dir_mutex(lock_nr); |
| parent->nr++; |
| } |
| } |
| |
| unlock_dir_mutex(lock_nr); |
| |
| return dir; |
| } |
| |
| /* |
| * handle_range_1() and handle_range_dir() are derived from |
| * clear_ce_flags_1() and clear_ce_flags_dir() in unpack-trees.c |
| * and handle the iteration over the entire array of index entries. |
| * They use recursion for adjacent entries in the same parent |
| * directory. |
| */ |
| static int handle_range_1( |
| struct index_state *istate, |
| int k_start, |
| int k_end, |
| struct dir_entry *parent, |
| struct strbuf *prefix, |
| struct lazy_entry *lazy_entries); |
| |
| static int handle_range_dir( |
| struct index_state *istate, |
| int k_start, |
| int k_end, |
| struct dir_entry *parent, |
| struct strbuf *prefix, |
| struct lazy_entry *lazy_entries, |
| struct dir_entry **dir_new_out) |
| { |
| int rc, k; |
| int input_prefix_len = prefix->len; |
| struct dir_entry *dir_new; |
| |
| dir_new = hash_dir_entry_with_parent_and_prefix(istate, parent, prefix); |
| |
| strbuf_addch(prefix, '/'); |
| |
| /* |
| * Scan forward in the index array for index entries having the same |
| * path prefix (that are also in this directory). |
| */ |
| if (k_start + 1 >= k_end) |
| k = k_end; |
| else if (strncmp(istate->cache[k_start + 1]->name, prefix->buf, prefix->len) > 0) |
| k = k_start + 1; |
| else if (strncmp(istate->cache[k_end - 1]->name, prefix->buf, prefix->len) == 0) |
| k = k_end; |
| else { |
| int begin = k_start; |
| int end = k_end; |
| while (begin < end) { |
| int mid = (begin + end) >> 1; |
| int cmp = strncmp(istate->cache[mid]->name, prefix->buf, prefix->len); |
| if (cmp == 0) /* mid has same prefix; look in second part */ |
| begin = mid + 1; |
| else if (cmp > 0) /* mid is past group; look in first part */ |
| end = mid; |
| else |
| die("cache entry out of order"); |
| } |
| k = begin; |
| } |
| |
| /* |
| * Recurse and process what we can of this subset [k_start, k). |
| */ |
| rc = handle_range_1(istate, k_start, k, dir_new, prefix, lazy_entries); |
| |
| strbuf_setlen(prefix, input_prefix_len); |
| |
| *dir_new_out = dir_new; |
| return rc; |
| } |
| |
| static int handle_range_1( |
| struct index_state *istate, |
| int k_start, |
| int k_end, |
| struct dir_entry *parent, |
| struct strbuf *prefix, |
| struct lazy_entry *lazy_entries) |
| { |
| int input_prefix_len = prefix->len; |
| int k = k_start; |
| |
| while (k < k_end) { |
| struct cache_entry *ce_k = istate->cache[k]; |
| const char *name, *slash; |
| |
| if (prefix->len && strncmp(ce_k->name, prefix->buf, prefix->len)) |
| break; |
| |
| name = ce_k->name + prefix->len; |
| slash = strchr(name, '/'); |
| |
| if (slash) { |
| int len = slash - name; |
| int processed; |
| struct dir_entry *dir_new; |
| |
| strbuf_add(prefix, name, len); |
| processed = handle_range_dir(istate, k, k_end, parent, prefix, lazy_entries, &dir_new); |
| if (processed) { |
| k += processed; |
| strbuf_setlen(prefix, input_prefix_len); |
| continue; |
| } |
| |
| strbuf_addch(prefix, '/'); |
| processed = handle_range_1(istate, k, k_end, dir_new, prefix, lazy_entries); |
| k += processed; |
| strbuf_setlen(prefix, input_prefix_len); |
| continue; |
| } |
| |
| /* |
| * It is too expensive to take a lock to insert "ce_k" |
| * into "istate->name_hash" and increment the ref-count |
| * on the "parent" dir. So we defer actually updating |
| * permanent data structures until phase 2 (where we |
| * can change the locking requirements) and simply |
| * accumulate our current results into the lazy_entries |
| * data array). |
| * |
| * We do not need to lock the lazy_entries array because |
| * we have exclusive access to the cells in the range |
| * [k_start,k_end) that this thread was given. |
| */ |
| lazy_entries[k].dir = parent; |
| if (parent) { |
| lazy_entries[k].hash_name = memihash_cont( |
| parent->ent.hash, |
| ce_k->name + parent->namelen, |
| ce_namelen(ce_k) - parent->namelen); |
| lazy_entries[k].hash_dir = parent->ent.hash; |
| } else { |
| lazy_entries[k].hash_name = memihash(ce_k->name, ce_namelen(ce_k)); |
| } |
| |
| k++; |
| } |
| |
| return k - k_start; |
| } |
| |
| struct lazy_dir_thread_data { |
| pthread_t pthread; |
| struct index_state *istate; |
| struct lazy_entry *lazy_entries; |
| int k_start; |
| int k_end; |
| }; |
| |
| static void *lazy_dir_thread_proc(void *_data) |
| { |
| struct lazy_dir_thread_data *d = _data; |
| struct strbuf prefix = STRBUF_INIT; |
| handle_range_1(d->istate, d->k_start, d->k_end, NULL, &prefix, d->lazy_entries); |
| strbuf_release(&prefix); |
| return NULL; |
| } |
| |
| struct lazy_name_thread_data { |
| pthread_t pthread; |
| struct index_state *istate; |
| struct lazy_entry *lazy_entries; |
| }; |
| |
| static void *lazy_name_thread_proc(void *_data) |
| { |
| struct lazy_name_thread_data *d = _data; |
| int k; |
| |
| for (k = 0; k < d->istate->cache_nr; k++) { |
| struct cache_entry *ce_k = d->istate->cache[k]; |
| ce_k->ce_flags |= CE_HASHED; |
| hashmap_entry_init(ce_k, d->lazy_entries[k].hash_name); |
| hashmap_add(&d->istate->name_hash, ce_k); |
| } |
| |
| return NULL; |
| } |
| |
| static inline void lazy_update_dir_ref_counts( |
| struct index_state *istate, |
| struct lazy_entry *lazy_entries) |
| { |
| int k; |
| |
| for (k = 0; k < istate->cache_nr; k++) { |
| if (lazy_entries[k].dir) |
| lazy_entries[k].dir->nr++; |
| } |
| } |
| |
| static void threaded_lazy_init_name_hash( |
| struct index_state *istate) |
| { |
| int err; |
| int nr_each; |
| int k_start; |
| int t; |
| struct lazy_entry *lazy_entries; |
| struct lazy_dir_thread_data *td_dir; |
| struct lazy_name_thread_data *td_name; |
| |
| if (!HAVE_THREADS) |
| return; |
| |
| k_start = 0; |
| nr_each = DIV_ROUND_UP(istate->cache_nr, lazy_nr_dir_threads); |
| |
| lazy_entries = xcalloc(istate->cache_nr, sizeof(struct lazy_entry)); |
| td_dir = xcalloc(lazy_nr_dir_threads, sizeof(struct lazy_dir_thread_data)); |
| td_name = xcalloc(1, sizeof(struct lazy_name_thread_data)); |
| |
| init_dir_mutex(); |
| |
| /* |
| * Phase 1: |
| * Build "istate->dir_hash" using n "dir" threads (and a read-only index). |
| */ |
| for (t = 0; t < lazy_nr_dir_threads; t++) { |
| struct lazy_dir_thread_data *td_dir_t = td_dir + t; |
| td_dir_t->istate = istate; |
| td_dir_t->lazy_entries = lazy_entries; |
| td_dir_t->k_start = k_start; |
| k_start += nr_each; |
| if (k_start > istate->cache_nr) |
| k_start = istate->cache_nr; |
| td_dir_t->k_end = k_start; |
| err = pthread_create(&td_dir_t->pthread, NULL, lazy_dir_thread_proc, td_dir_t); |
| if (err) |
| die(_("unable to create lazy_dir thread: %s"), strerror(err)); |
| } |
| for (t = 0; t < lazy_nr_dir_threads; t++) { |
| struct lazy_dir_thread_data *td_dir_t = td_dir + t; |
| if (pthread_join(td_dir_t->pthread, NULL)) |
| die("unable to join lazy_dir_thread"); |
| } |
| |
| /* |
| * Phase 2: |
| * Iterate over all index entries and add them to the "istate->name_hash" |
| * using a single "name" background thread. |
| * (Testing showed it wasn't worth running more than 1 thread for this.) |
| * |
| * Meanwhile, finish updating the parent directory ref-counts for each |
| * index entry using the current thread. (This step is very fast and |
| * doesn't need threading.) |
| */ |
| td_name->istate = istate; |
| td_name->lazy_entries = lazy_entries; |
| err = pthread_create(&td_name->pthread, NULL, lazy_name_thread_proc, td_name); |
| if (err) |
| die(_("unable to create lazy_name thread: %s"), strerror(err)); |
| |
| lazy_update_dir_ref_counts(istate, lazy_entries); |
| |
| err = pthread_join(td_name->pthread, NULL); |
| if (err) |
| die(_("unable to join lazy_name thread: %s"), strerror(err)); |
| |
| cleanup_dir_mutex(); |
| |
| free(td_name); |
| free(td_dir); |
| free(lazy_entries); |
| } |
| |
| static void lazy_init_name_hash(struct index_state *istate) |
| { |
| |
| if (istate->name_hash_initialized) |
| return; |
| trace_performance_enter(); |
| hashmap_init(&istate->name_hash, cache_entry_cmp, NULL, istate->cache_nr); |
| hashmap_init(&istate->dir_hash, dir_entry_cmp, NULL, istate->cache_nr); |
| |
| if (lookup_lazy_params(istate)) { |
| /* |
| * Disable item counting and automatic rehashing because |
| * we do per-chain (mod n) locking rather than whole hashmap |
| * locking and we need to prevent the table-size from changing |
| * and bucket items from being redistributed. |
| */ |
| hashmap_disable_item_counting(&istate->dir_hash); |
| threaded_lazy_init_name_hash(istate); |
| hashmap_enable_item_counting(&istate->dir_hash); |
| } else { |
| int nr; |
| for (nr = 0; nr < istate->cache_nr; nr++) |
| hash_index_entry(istate, istate->cache[nr]); |
| } |
| |
| istate->name_hash_initialized = 1; |
| trace_performance_leave("initialize name hash"); |
| } |
| |
| /* |
| * A test routine for t/helper/ sources. |
| * |
| * Returns the number of threads used or 0 when |
| * the non-threaded code path was used. |
| * |
| * Requesting threading WILL NOT override guards |
| * in lookup_lazy_params(). |
| */ |
| int test_lazy_init_name_hash(struct index_state *istate, int try_threaded) |
| { |
| lazy_nr_dir_threads = 0; |
| lazy_try_threaded = try_threaded; |
| |
| lazy_init_name_hash(istate); |
| |
| return lazy_nr_dir_threads; |
| } |
| |
| void add_name_hash(struct index_state *istate, struct cache_entry *ce) |
| { |
| if (istate->name_hash_initialized) |
| hash_index_entry(istate, ce); |
| } |
| |
| void remove_name_hash(struct index_state *istate, struct cache_entry *ce) |
| { |
| if (!istate->name_hash_initialized || !(ce->ce_flags & CE_HASHED)) |
| return; |
| ce->ce_flags &= ~CE_HASHED; |
| hashmap_remove(&istate->name_hash, ce, ce); |
| |
| if (ignore_case) |
| remove_dir_entry(istate, ce); |
| } |
| |
| static int slow_same_name(const char *name1, int len1, const char *name2, int len2) |
| { |
| if (len1 != len2) |
| return 0; |
| |
| while (len1) { |
| unsigned char c1 = *name1++; |
| unsigned char c2 = *name2++; |
| len1--; |
| if (c1 != c2) { |
| c1 = toupper(c1); |
| c2 = toupper(c2); |
| if (c1 != c2) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int same_name(const struct cache_entry *ce, const char *name, int namelen, int icase) |
| { |
| int len = ce_namelen(ce); |
| |
| /* |
| * Always do exact compare, even if we want a case-ignoring comparison; |
| * we do the quick exact one first, because it will be the common case. |
| */ |
| if (len == namelen && !memcmp(name, ce->name, len)) |
| return 1; |
| |
| if (!icase) |
| return 0; |
| |
| return slow_same_name(name, namelen, ce->name, len); |
| } |
| |
| int index_dir_exists(struct index_state *istate, const char *name, int namelen) |
| { |
| struct dir_entry *dir; |
| |
| lazy_init_name_hash(istate); |
| dir = find_dir_entry(istate, name, namelen); |
| return dir && dir->nr; |
| } |
| |
| void adjust_dirname_case(struct index_state *istate, char *name) |
| { |
| const char *startPtr = name; |
| const char *ptr = startPtr; |
| |
| lazy_init_name_hash(istate); |
| while (*ptr) { |
| while (*ptr && *ptr != '/') |
| ptr++; |
| |
| if (*ptr == '/') { |
| struct dir_entry *dir; |
| |
| dir = find_dir_entry(istate, name, ptr - name); |
| if (dir) { |
| memcpy((void *)startPtr, dir->name + (startPtr - name), ptr - startPtr); |
| startPtr = ptr + 1; |
| } |
| ptr++; |
| } |
| } |
| } |
| |
| struct cache_entry *index_file_exists(struct index_state *istate, const char *name, int namelen, int icase) |
| { |
| struct cache_entry *ce; |
| |
| lazy_init_name_hash(istate); |
| |
| ce = hashmap_get_from_hash(&istate->name_hash, |
| memihash(name, namelen), NULL); |
| while (ce) { |
| if (same_name(ce, name, namelen, icase)) |
| return ce; |
| ce = hashmap_get_next(&istate->name_hash, ce); |
| } |
| return NULL; |
| } |
| |
| void free_name_hash(struct index_state *istate) |
| { |
| if (!istate->name_hash_initialized) |
| return; |
| istate->name_hash_initialized = 0; |
| |
| hashmap_free(&istate->name_hash, 0); |
| hashmap_free(&istate->dir_hash, 1); |
| } |