| /* Extended regular expression matching and search library. |
| Copyright (C) 2002-2005, 2007, 2009, 2010 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301 USA. */ |
| |
| static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, |
| int n) internal_function; |
| static void match_ctx_clean (re_match_context_t *mctx) internal_function; |
| static void match_ctx_free (re_match_context_t *cache) internal_function; |
| static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node, |
| int str_idx, int from, int to) |
| internal_function; |
| static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) |
| internal_function; |
| static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node, |
| int str_idx) internal_function; |
| static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, |
| int node, int str_idx) |
| internal_function; |
| static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
| re_dfastate_t **limited_sts, int last_node, |
| int last_str_idx) |
| internal_function; |
| static reg_errcode_t re_search_internal (const regex_t *preg, |
| const char *string, int length, |
| int start, int range, int stop, |
| size_t nmatch, regmatch_t pmatch[], |
| int eflags); |
| static int re_search_2_stub (struct re_pattern_buffer *bufp, |
| const char *string1, int length1, |
| const char *string2, int length2, |
| int start, int range, struct re_registers *regs, |
| int stop, int ret_len); |
| static int re_search_stub (struct re_pattern_buffer *bufp, |
| const char *string, int length, int start, |
| int range, int stop, struct re_registers *regs, |
| int ret_len); |
| static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, |
| int nregs, int regs_allocated); |
| static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); |
| static int check_matching (re_match_context_t *mctx, int fl_longest_match, |
| int *p_match_first) internal_function; |
| static int check_halt_state_context (const re_match_context_t *mctx, |
| const re_dfastate_t *state, int idx) |
| internal_function; |
| static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
| regmatch_t *prev_idx_match, int cur_node, |
| int cur_idx, int nmatch) internal_function; |
| static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, |
| int str_idx, int dest_node, int nregs, |
| regmatch_t *regs, |
| re_node_set *eps_via_nodes) |
| internal_function; |
| static reg_errcode_t set_regs (const regex_t *preg, |
| const re_match_context_t *mctx, |
| size_t nmatch, regmatch_t *pmatch, |
| int fl_backtrack) internal_function; |
| static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) |
| internal_function; |
| |
| #ifdef RE_ENABLE_I18N |
| static int sift_states_iter_mb (const re_match_context_t *mctx, |
| re_sift_context_t *sctx, |
| int node_idx, int str_idx, int max_str_idx) |
| internal_function; |
| #endif /* RE_ENABLE_I18N */ |
| static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, |
| re_sift_context_t *sctx) |
| internal_function; |
| static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, |
| re_sift_context_t *sctx, int str_idx, |
| re_node_set *cur_dest) |
| internal_function; |
| static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, |
| re_sift_context_t *sctx, |
| int str_idx, |
| re_node_set *dest_nodes) |
| internal_function; |
| static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, |
| re_node_set *dest_nodes, |
| const re_node_set *candidates) |
| internal_function; |
| static int check_dst_limits (const re_match_context_t *mctx, |
| re_node_set *limits, |
| int dst_node, int dst_idx, int src_node, |
| int src_idx) internal_function; |
| static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, |
| int boundaries, int subexp_idx, |
| int from_node, int bkref_idx) |
| internal_function; |
| static int check_dst_limits_calc_pos (const re_match_context_t *mctx, |
| int limit, int subexp_idx, |
| int node, int str_idx, |
| int bkref_idx) internal_function; |
| static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, |
| re_node_set *dest_nodes, |
| const re_node_set *candidates, |
| re_node_set *limits, |
| struct re_backref_cache_entry *bkref_ents, |
| int str_idx) internal_function; |
| static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, |
| re_sift_context_t *sctx, |
| int str_idx, const re_node_set *candidates) |
| internal_function; |
| static reg_errcode_t merge_state_array (const re_dfa_t *dfa, |
| re_dfastate_t **dst, |
| re_dfastate_t **src, int num) |
| internal_function; |
| static re_dfastate_t *find_recover_state (reg_errcode_t *err, |
| re_match_context_t *mctx) internal_function; |
| static re_dfastate_t *transit_state (reg_errcode_t *err, |
| re_match_context_t *mctx, |
| re_dfastate_t *state) internal_function; |
| static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, |
| re_match_context_t *mctx, |
| re_dfastate_t *next_state) |
| internal_function; |
| static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, |
| re_node_set *cur_nodes, |
| int str_idx) internal_function; |
| #if 0 |
| static re_dfastate_t *transit_state_sb (reg_errcode_t *err, |
| re_match_context_t *mctx, |
| re_dfastate_t *pstate) |
| internal_function; |
| #endif |
| #ifdef RE_ENABLE_I18N |
| static reg_errcode_t transit_state_mb (re_match_context_t *mctx, |
| re_dfastate_t *pstate) |
| internal_function; |
| #endif /* RE_ENABLE_I18N */ |
| static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, |
| const re_node_set *nodes) |
| internal_function; |
| static reg_errcode_t get_subexp (re_match_context_t *mctx, |
| int bkref_node, int bkref_str_idx) |
| internal_function; |
| static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, |
| const re_sub_match_top_t *sub_top, |
| re_sub_match_last_t *sub_last, |
| int bkref_node, int bkref_str) |
| internal_function; |
| static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
| int subexp_idx, int type) internal_function; |
| static reg_errcode_t check_arrival (re_match_context_t *mctx, |
| state_array_t *path, int top_node, |
| int top_str, int last_node, int last_str, |
| int type) internal_function; |
| static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, |
| int str_idx, |
| re_node_set *cur_nodes, |
| re_node_set *next_nodes) |
| internal_function; |
| static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, |
| re_node_set *cur_nodes, |
| int ex_subexp, int type) |
| internal_function; |
| static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, |
| re_node_set *dst_nodes, |
| int target, int ex_subexp, |
| int type) internal_function; |
| static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, |
| re_node_set *cur_nodes, int cur_str, |
| int subexp_num, int type) |
| internal_function; |
| static int build_trtable (const re_dfa_t *dfa, |
| re_dfastate_t *state) internal_function; |
| #ifdef RE_ENABLE_I18N |
| static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, |
| const re_string_t *input, int idx) |
| internal_function; |
| # ifdef _LIBC |
| static unsigned int find_collation_sequence_value (const unsigned char *mbs, |
| size_t name_len) |
| internal_function; |
| # endif /* _LIBC */ |
| #endif /* RE_ENABLE_I18N */ |
| static int group_nodes_into_DFAstates (const re_dfa_t *dfa, |
| const re_dfastate_t *state, |
| re_node_set *states_node, |
| bitset_t *states_ch) internal_function; |
| static int check_node_accept (const re_match_context_t *mctx, |
| const re_token_t *node, int idx) |
| internal_function; |
| static reg_errcode_t extend_buffers (re_match_context_t *mctx) |
| internal_function; |
| |
| /* Entry point for POSIX code. */ |
| |
| /* regexec searches for a given pattern, specified by PREG, in the |
| string STRING. |
| |
| If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
| `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
| least NMATCH elements, and we set them to the offsets of the |
| corresponding matched substrings. |
| |
| EFLAGS specifies `execution flags' which affect matching: if |
| REG_NOTBOL is set, then ^ does not match at the beginning of the |
| string; if REG_NOTEOL is set, then $ does not match at the end. |
| |
| We return 0 if we find a match and REG_NOMATCH if not. */ |
| |
| int |
| regexec ( |
| const regex_t *__restrict preg, |
| const char *__restrict string, |
| size_t nmatch, |
| regmatch_t pmatch[], |
| int eflags) |
| { |
| reg_errcode_t err; |
| int start, length; |
| |
| if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) |
| return REG_BADPAT; |
| |
| if (eflags & REG_STARTEND) |
| { |
| start = pmatch[0].rm_so; |
| length = pmatch[0].rm_eo; |
| } |
| else |
| { |
| start = 0; |
| length = strlen (string); |
| } |
| |
| __libc_lock_lock (dfa->lock); |
| if (preg->no_sub) |
| err = re_search_internal (preg, string, length, start, length - start, |
| length, 0, NULL, eflags); |
| else |
| err = re_search_internal (preg, string, length, start, length - start, |
| length, nmatch, pmatch, eflags); |
| __libc_lock_unlock (dfa->lock); |
| return err != REG_NOERROR; |
| } |
| |
| #ifdef _LIBC |
| # include <shlib-compat.h> |
| versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); |
| |
| # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) |
| __typeof__ (__regexec) __compat_regexec; |
| |
| int |
| attribute_compat_text_section |
| __compat_regexec (const regex_t *__restrict preg, |
| const char *__restrict string, size_t nmatch, |
| regmatch_t pmatch[], int eflags) |
| { |
| return regexec (preg, string, nmatch, pmatch, |
| eflags & (REG_NOTBOL | REG_NOTEOL)); |
| } |
| compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); |
| # endif |
| #endif |
| |
| /* Entry points for GNU code. */ |
| |
| /* re_match, re_search, re_match_2, re_search_2 |
| |
| The former two functions operate on STRING with length LENGTH, |
| while the later two operate on concatenation of STRING1 and STRING2 |
| with lengths LENGTH1 and LENGTH2, respectively. |
| |
| re_match() matches the compiled pattern in BUFP against the string, |
| starting at index START. |
| |
| re_search() first tries matching at index START, then it tries to match |
| starting from index START + 1, and so on. The last start position tried |
| is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same |
| way as re_match().) |
| |
| The parameter STOP of re_{match,search}_2 specifies that no match exceeding |
| the first STOP characters of the concatenation of the strings should be |
| concerned. |
| |
| If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match |
| and all groups is stroed in REGS. (For the "_2" variants, the offsets are |
| computed relative to the concatenation, not relative to the individual |
| strings.) |
| |
| On success, re_match* functions return the length of the match, re_search* |
| return the position of the start of the match. Return value -1 means no |
| match was found and -2 indicates an internal error. */ |
| |
| int |
| re_match (struct re_pattern_buffer *bufp, |
| const char *string, |
| int length, |
| int start, |
| struct re_registers *regs) |
| { |
| return re_search_stub (bufp, string, length, start, 0, length, regs, 1); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_match, re_match) |
| #endif |
| |
| int |
| re_search (struct re_pattern_buffer *bufp, |
| const char *string, |
| int length, int start, int range, |
| struct re_registers *regs) |
| { |
| return re_search_stub (bufp, string, length, start, range, length, regs, 0); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_search, re_search) |
| #endif |
| |
| int |
| re_match_2 (struct re_pattern_buffer *bufp, |
| const char *string1, int length1, |
| const char *string2, int length2, int start, |
| struct re_registers *regs, int stop) |
| { |
| return re_search_2_stub (bufp, string1, length1, string2, length2, |
| start, 0, regs, stop, 1); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_match_2, re_match_2) |
| #endif |
| |
| int |
| re_search_2 (struct re_pattern_buffer *bufp, |
| const char *string1, int length1, |
| const char *string2, int length2, int start, |
| int range, struct re_registers *regs, int stop) |
| { |
| return re_search_2_stub (bufp, string1, length1, string2, length2, |
| start, range, regs, stop, 0); |
| } |
| #ifdef _LIBC |
| weak_alias (__re_search_2, re_search_2) |
| #endif |
| |
| static int |
| re_search_2_stub (struct re_pattern_buffer *bufp, |
| const char *string1, int length1, |
| const char *string2, int length2, int start, |
| int range, struct re_registers *regs, |
| int stop, int ret_len) |
| { |
| const char *str; |
| int rval; |
| int len = length1 + length2; |
| int free_str = 0; |
| |
| if (BE (length1 < 0 || length2 < 0 || stop < 0, 0)) |
| return -2; |
| |
| /* Concatenate the strings. */ |
| if (length2 > 0) |
| if (length1 > 0) |
| { |
| char *s = re_malloc (char, len); |
| |
| if (BE (s == NULL, 0)) |
| return -2; |
| memcpy (s, string1, length1); |
| memcpy (s + length1, string2, length2); |
| str = s; |
| free_str = 1; |
| } |
| else |
| str = string2; |
| else |
| str = string1; |
| |
| rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len); |
| if (free_str) |
| re_free ((char *) str); |
| return rval; |
| } |
| |
| /* The parameters have the same meaning as those of re_search. |
| Additional parameters: |
| If RET_LEN is nonzero the length of the match is returned (re_match style); |
| otherwise the position of the match is returned. */ |
| |
| static int |
| re_search_stub (struct re_pattern_buffer *bufp, |
| const char *string, int length, int start, |
| int range, int stop, |
| struct re_registers *regs, int ret_len) |
| { |
| reg_errcode_t result; |
| regmatch_t *pmatch; |
| int nregs, rval; |
| int eflags = 0; |
| |
| /* Check for out-of-range. */ |
| if (BE (start < 0 || start > length, 0)) |
| return -1; |
| if (BE (start + range > length, 0)) |
| range = length - start; |
| else if (BE (start + range < 0, 0)) |
| range = -start; |
| |
| __libc_lock_lock (dfa->lock); |
| |
| eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; |
| eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; |
| |
| /* Compile fastmap if we haven't yet. */ |
| if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate) |
| re_compile_fastmap (bufp); |
| |
| if (BE (bufp->no_sub, 0)) |
| regs = NULL; |
| |
| /* We need at least 1 register. */ |
| if (regs == NULL) |
| nregs = 1; |
| else if (BE (bufp->regs_allocated == REGS_FIXED && |
| regs->num_regs < bufp->re_nsub + 1, 0)) |
| { |
| nregs = regs->num_regs; |
| if (BE (nregs < 1, 0)) |
| { |
| /* Nothing can be copied to regs. */ |
| regs = NULL; |
| nregs = 1; |
| } |
| } |
| else |
| nregs = bufp->re_nsub + 1; |
| pmatch = re_malloc (regmatch_t, nregs); |
| if (BE (pmatch == NULL, 0)) |
| { |
| rval = -2; |
| goto out; |
| } |
| |
| result = re_search_internal (bufp, string, length, start, range, stop, |
| nregs, pmatch, eflags); |
| |
| rval = 0; |
| |
| /* I hope we needn't fill ther regs with -1's when no match was found. */ |
| if (result != REG_NOERROR) |
| rval = -1; |
| else if (regs != NULL) |
| { |
| /* If caller wants register contents data back, copy them. */ |
| bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, |
| bufp->regs_allocated); |
| if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) |
| rval = -2; |
| } |
| |
| if (BE (rval == 0, 1)) |
| { |
| if (ret_len) |
| { |
| assert (pmatch[0].rm_so == start); |
| rval = pmatch[0].rm_eo - start; |
| } |
| else |
| rval = pmatch[0].rm_so; |
| } |
| re_free (pmatch); |
| out: |
| __libc_lock_unlock (dfa->lock); |
| return rval; |
| } |
| |
| static unsigned |
| re_copy_regs (struct re_registers *regs, |
| regmatch_t *pmatch, |
| int nregs, int regs_allocated) |
| { |
| int rval = REGS_REALLOCATE; |
| int i; |
| int need_regs = nregs + 1; |
| /* We need one extra element beyond `num_regs' for the `-1' marker GNU code |
| uses. */ |
| |
| /* Have the register data arrays been allocated? */ |
| if (regs_allocated == REGS_UNALLOCATED) |
| { /* No. So allocate them with malloc. */ |
| regs->start = re_malloc (regoff_t, need_regs); |
| if (BE (regs->start == NULL, 0)) |
| return REGS_UNALLOCATED; |
| regs->end = re_malloc (regoff_t, need_regs); |
| if (BE (regs->end == NULL, 0)) |
| { |
| re_free (regs->start); |
| return REGS_UNALLOCATED; |
| } |
| regs->num_regs = need_regs; |
| } |
| else if (regs_allocated == REGS_REALLOCATE) |
| { /* Yes. If we need more elements than were already |
| allocated, reallocate them. If we need fewer, just |
| leave it alone. */ |
| if (BE (need_regs > regs->num_regs, 0)) |
| { |
| regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); |
| regoff_t *new_end; |
| if (BE (new_start == NULL, 0)) |
| return REGS_UNALLOCATED; |
| new_end = re_realloc (regs->end, regoff_t, need_regs); |
| if (BE (new_end == NULL, 0)) |
| { |
| re_free (new_start); |
| return REGS_UNALLOCATED; |
| } |
| regs->start = new_start; |
| regs->end = new_end; |
| regs->num_regs = need_regs; |
| } |
| } |
| else |
| { |
| assert (regs_allocated == REGS_FIXED); |
| /* This function may not be called with REGS_FIXED and nregs too big. */ |
| assert (regs->num_regs >= nregs); |
| rval = REGS_FIXED; |
| } |
| |
| /* Copy the regs. */ |
| for (i = 0; i < nregs; ++i) |
| { |
| regs->start[i] = pmatch[i].rm_so; |
| regs->end[i] = pmatch[i].rm_eo; |
| } |
| for ( ; i < regs->num_regs; ++i) |
| regs->start[i] = regs->end[i] = -1; |
| |
| return rval; |
| } |
| |
| /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
| ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
| this memory for recording register information. STARTS and ENDS |
| must be allocated using the malloc library routine, and must each |
| be at least NUM_REGS * sizeof (regoff_t) bytes long. |
| |
| If NUM_REGS == 0, then subsequent matches should allocate their own |
| register data. |
| |
| Unless this function is called, the first search or match using |
| PATTERN_BUFFER will allocate its own register data, without |
| freeing the old data. */ |
| |
| void |
| re_set_registers (struct re_pattern_buffer *bufp, |
| struct re_registers *regs, |
| unsigned num_regs, |
| regoff_t *starts, |
| regoff_t *ends) |
| { |
| if (num_regs) |
| { |
| bufp->regs_allocated = REGS_REALLOCATE; |
| regs->num_regs = num_regs; |
| regs->start = starts; |
| regs->end = ends; |
| } |
| else |
| { |
| bufp->regs_allocated = REGS_UNALLOCATED; |
| regs->num_regs = 0; |
| regs->start = regs->end = (regoff_t *) 0; |
| } |
| } |
| #ifdef _LIBC |
| weak_alias (__re_set_registers, re_set_registers) |
| #endif |
| |
| /* Entry points compatible with 4.2 BSD regex library. We don't define |
| them unless specifically requested. */ |
| |
| #if defined _REGEX_RE_COMP || defined _LIBC |
| int |
| # ifdef _LIBC |
| weak_function |
| # endif |
| re_exec (s) |
| const char *s; |
| { |
| return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); |
| } |
| #endif /* _REGEX_RE_COMP */ |
| |
| /* Internal entry point. */ |
| |
| /* Searches for a compiled pattern PREG in the string STRING, whose |
| length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same |
| mingings with regexec. START, and RANGE have the same meanings |
| with re_search. |
| Return REG_NOERROR if we find a match, and REG_NOMATCH if not, |
| otherwise return the error code. |
| Note: We assume front end functions already check ranges. |
| (START + RANGE >= 0 && START + RANGE <= LENGTH) */ |
| |
| static reg_errcode_t |
| re_search_internal (const regex_t *preg, |
| const char *string, |
| int length, int start, int range, int stop, |
| size_t nmatch, regmatch_t pmatch[], |
| int eflags) |
| { |
| reg_errcode_t err; |
| const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; |
| int left_lim, right_lim, incr; |
| int fl_longest_match, match_first, match_kind, match_last = -1; |
| int extra_nmatch; |
| int sb, ch; |
| #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) |
| re_match_context_t mctx = { .dfa = dfa }; |
| #else |
| re_match_context_t mctx; |
| #endif |
| char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate |
| && range && !preg->can_be_null) ? preg->fastmap : NULL; |
| RE_TRANSLATE_TYPE t = preg->translate; |
| |
| #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) |
| memset (&mctx, '\0', sizeof (re_match_context_t)); |
| mctx.dfa = dfa; |
| #endif |
| |
| extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; |
| nmatch -= extra_nmatch; |
| |
| /* Check if the DFA haven't been compiled. */ |
| if (BE (preg->used == 0 || dfa->init_state == NULL |
| || dfa->init_state_word == NULL || dfa->init_state_nl == NULL |
| || dfa->init_state_begbuf == NULL, 0)) |
| return REG_NOMATCH; |
| |
| #ifdef DEBUG |
| /* We assume front-end functions already check them. */ |
| assert (start + range >= 0 && start + range <= length); |
| #endif |
| |
| /* If initial states with non-begbuf contexts have no elements, |
| the regex must be anchored. If preg->newline_anchor is set, |
| we'll never use init_state_nl, so do not check it. */ |
| if (dfa->init_state->nodes.nelem == 0 |
| && dfa->init_state_word->nodes.nelem == 0 |
| && (dfa->init_state_nl->nodes.nelem == 0 |
| || !preg->newline_anchor)) |
| { |
| if (start != 0 && start + range != 0) |
| return REG_NOMATCH; |
| start = range = 0; |
| } |
| |
| /* We must check the longest matching, if nmatch > 0. */ |
| fl_longest_match = (nmatch != 0 || dfa->nbackref); |
| |
| err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, |
| preg->translate, preg->syntax & RE_ICASE, dfa); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| mctx.input.stop = stop; |
| mctx.input.raw_stop = stop; |
| mctx.input.newline_anchor = preg->newline_anchor; |
| |
| err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| |
| /* We will log all the DFA states through which the dfa pass, |
| if nmatch > 1, or this dfa has "multibyte node", which is a |
| back-reference or a node which can accept multibyte character or |
| multi character collating element. */ |
| if (nmatch > 1 || dfa->has_mb_node) |
| { |
| /* Avoid overflow. */ |
| if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0)) |
| { |
| err = REG_ESPACE; |
| goto free_return; |
| } |
| |
| mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); |
| if (BE (mctx.state_log == NULL, 0)) |
| { |
| err = REG_ESPACE; |
| goto free_return; |
| } |
| } |
| else |
| mctx.state_log = NULL; |
| |
| match_first = start; |
| mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
| : CONTEXT_NEWLINE | CONTEXT_BEGBUF; |
| |
| /* Check incrementally whether of not the input string match. */ |
| incr = (range < 0) ? -1 : 1; |
| left_lim = (range < 0) ? start + range : start; |
| right_lim = (range < 0) ? start : start + range; |
| sb = dfa->mb_cur_max == 1; |
| match_kind = |
| (fastmap |
| ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) |
| | (range >= 0 ? 2 : 0) |
| | (t != NULL ? 1 : 0)) |
| : 8); |
| |
| for (;; match_first += incr) |
| { |
| err = REG_NOMATCH; |
| if (match_first < left_lim || right_lim < match_first) |
| goto free_return; |
| |
| /* Advance as rapidly as possible through the string, until we |
| find a plausible place to start matching. This may be done |
| with varying efficiency, so there are various possibilities: |
| only the most common of them are specialized, in order to |
| save on code size. We use a switch statement for speed. */ |
| switch (match_kind) |
| { |
| case 8: |
| /* No fastmap. */ |
| break; |
| |
| case 7: |
| /* Fastmap with single-byte translation, match forward. */ |
| while (BE (match_first < right_lim, 1) |
| && !fastmap[t[(unsigned char) string[match_first]]]) |
| ++match_first; |
| goto forward_match_found_start_or_reached_end; |
| |
| case 6: |
| /* Fastmap without translation, match forward. */ |
| while (BE (match_first < right_lim, 1) |
| && !fastmap[(unsigned char) string[match_first]]) |
| ++match_first; |
| |
| forward_match_found_start_or_reached_end: |
| if (BE (match_first == right_lim, 0)) |
| { |
| ch = match_first >= length |
| ? 0 : (unsigned char) string[match_first]; |
| if (!fastmap[t ? t[ch] : ch]) |
| goto free_return; |
| } |
| break; |
| |
| case 4: |
| case 5: |
| /* Fastmap without multi-byte translation, match backwards. */ |
| while (match_first >= left_lim) |
| { |
| ch = match_first >= length |
| ? 0 : (unsigned char) string[match_first]; |
| if (fastmap[t ? t[ch] : ch]) |
| break; |
| --match_first; |
| } |
| if (match_first < left_lim) |
| goto free_return; |
| break; |
| |
| default: |
| /* In this case, we can't determine easily the current byte, |
| since it might be a component byte of a multibyte |
| character. Then we use the constructed buffer instead. */ |
| for (;;) |
| { |
| /* If MATCH_FIRST is out of the valid range, reconstruct the |
| buffers. */ |
| unsigned int offset = match_first - mctx.input.raw_mbs_idx; |
| if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0)) |
| { |
| err = re_string_reconstruct (&mctx.input, match_first, |
| eflags); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| |
| offset = match_first - mctx.input.raw_mbs_idx; |
| } |
| /* If MATCH_FIRST is out of the buffer, leave it as '\0'. |
| Note that MATCH_FIRST must not be smaller than 0. */ |
| ch = (match_first >= length |
| ? 0 : re_string_byte_at (&mctx.input, offset)); |
| if (fastmap[ch]) |
| break; |
| match_first += incr; |
| if (match_first < left_lim || match_first > right_lim) |
| { |
| err = REG_NOMATCH; |
| goto free_return; |
| } |
| } |
| break; |
| } |
| |
| /* Reconstruct the buffers so that the matcher can assume that |
| the matching starts from the beginning of the buffer. */ |
| err = re_string_reconstruct (&mctx.input, match_first, eflags); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| |
| #ifdef RE_ENABLE_I18N |
| /* Don't consider this char as a possible match start if it part, |
| yet isn't the head, of a multibyte character. */ |
| if (!sb && !re_string_first_byte (&mctx.input, 0)) |
| continue; |
| #endif |
| |
| /* It seems to be appropriate one, then use the matcher. */ |
| /* We assume that the matching starts from 0. */ |
| mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; |
| match_last = check_matching (&mctx, fl_longest_match, |
| range >= 0 ? &match_first : NULL); |
| if (match_last != -1) |
| { |
| if (BE (match_last == -2, 0)) |
| { |
| err = REG_ESPACE; |
| goto free_return; |
| } |
| else |
| { |
| mctx.match_last = match_last; |
| if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) |
| { |
| re_dfastate_t *pstate = mctx.state_log[match_last]; |
| mctx.last_node = check_halt_state_context (&mctx, pstate, |
| match_last); |
| } |
| if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) |
| || dfa->nbackref) |
| { |
| err = prune_impossible_nodes (&mctx); |
| if (err == REG_NOERROR) |
| break; |
| if (BE (err != REG_NOMATCH, 0)) |
| goto free_return; |
| match_last = -1; |
| } |
| else |
| break; /* We found a match. */ |
| } |
| } |
| |
| match_ctx_clean (&mctx); |
| } |
| |
| #ifdef DEBUG |
| assert (match_last != -1); |
| assert (err == REG_NOERROR); |
| #endif |
| |
| /* Set pmatch[] if we need. */ |
| if (nmatch > 0) |
| { |
| int reg_idx; |
| |
| /* Initialize registers. */ |
| for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) |
| pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; |
| |
| /* Set the points where matching start/end. */ |
| pmatch[0].rm_so = 0; |
| pmatch[0].rm_eo = mctx.match_last; |
| |
| if (!preg->no_sub && nmatch > 1) |
| { |
| err = set_regs (preg, &mctx, nmatch, pmatch, |
| dfa->has_plural_match && dfa->nbackref > 0); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| |
| /* At last, add the offset to the each registers, since we slided |
| the buffers so that we could assume that the matching starts |
| from 0. */ |
| for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
| if (pmatch[reg_idx].rm_so != -1) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (BE (mctx.input.offsets_needed != 0, 0)) |
| { |
| pmatch[reg_idx].rm_so = |
| (pmatch[reg_idx].rm_so == mctx.input.valid_len |
| ? mctx.input.valid_raw_len |
| : mctx.input.offsets[pmatch[reg_idx].rm_so]); |
| pmatch[reg_idx].rm_eo = |
| (pmatch[reg_idx].rm_eo == mctx.input.valid_len |
| ? mctx.input.valid_raw_len |
| : mctx.input.offsets[pmatch[reg_idx].rm_eo]); |
| } |
| #else |
| assert (mctx.input.offsets_needed == 0); |
| #endif |
| pmatch[reg_idx].rm_so += match_first; |
| pmatch[reg_idx].rm_eo += match_first; |
| } |
| for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) |
| { |
| pmatch[nmatch + reg_idx].rm_so = -1; |
| pmatch[nmatch + reg_idx].rm_eo = -1; |
| } |
| |
| if (dfa->subexp_map) |
| for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) |
| if (dfa->subexp_map[reg_idx] != reg_idx) |
| { |
| pmatch[reg_idx + 1].rm_so |
| = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; |
| pmatch[reg_idx + 1].rm_eo |
| = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; |
| } |
| } |
| |
| free_return: |
| re_free (mctx.state_log); |
| if (dfa->nbackref) |
| match_ctx_free (&mctx); |
| re_string_destruct (&mctx.input); |
| return err; |
| } |
| |
| static reg_errcode_t |
| prune_impossible_nodes (re_match_context_t *mctx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int halt_node, match_last; |
| reg_errcode_t ret; |
| re_dfastate_t **sifted_states; |
| re_dfastate_t **lim_states = NULL; |
| re_sift_context_t sctx; |
| #ifdef DEBUG |
| assert (mctx->state_log != NULL); |
| #endif |
| match_last = mctx->match_last; |
| halt_node = mctx->last_node; |
| |
| /* Avoid overflow. */ |
| if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0)) |
| return REG_ESPACE; |
| |
| sifted_states = re_malloc (re_dfastate_t *, match_last + 1); |
| if (BE (sifted_states == NULL, 0)) |
| { |
| ret = REG_ESPACE; |
| goto free_return; |
| } |
| if (dfa->nbackref) |
| { |
| lim_states = re_malloc (re_dfastate_t *, match_last + 1); |
| if (BE (lim_states == NULL, 0)) |
| { |
| ret = REG_ESPACE; |
| goto free_return; |
| } |
| while (1) |
| { |
| memset (lim_states, '\0', |
| sizeof (re_dfastate_t *) * (match_last + 1)); |
| sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, |
| match_last); |
| ret = sift_states_backward (mctx, &sctx); |
| re_node_set_free (&sctx.limits); |
| if (BE (ret != REG_NOERROR, 0)) |
| goto free_return; |
| if (sifted_states[0] != NULL || lim_states[0] != NULL) |
| break; |
| do |
| { |
| --match_last; |
| if (match_last < 0) |
| { |
| ret = REG_NOMATCH; |
| goto free_return; |
| } |
| } while (mctx->state_log[match_last] == NULL |
| || !mctx->state_log[match_last]->halt); |
| halt_node = check_halt_state_context (mctx, |
| mctx->state_log[match_last], |
| match_last); |
| } |
| ret = merge_state_array (dfa, sifted_states, lim_states, |
| match_last + 1); |
| re_free (lim_states); |
| lim_states = NULL; |
| if (BE (ret != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| else |
| { |
| sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); |
| ret = sift_states_backward (mctx, &sctx); |
| re_node_set_free (&sctx.limits); |
| if (BE (ret != REG_NOERROR, 0)) |
| goto free_return; |
| if (sifted_states[0] == NULL) |
| { |
| ret = REG_NOMATCH; |
| goto free_return; |
| } |
| } |
| re_free (mctx->state_log); |
| mctx->state_log = sifted_states; |
| sifted_states = NULL; |
| mctx->last_node = halt_node; |
| mctx->match_last = match_last; |
| ret = REG_NOERROR; |
| free_return: |
| re_free (sifted_states); |
| re_free (lim_states); |
| return ret; |
| } |
| |
| /* Acquire an initial state and return it. |
| We must select appropriate initial state depending on the context, |
| since initial states may have constraints like "\<", "^", etc.. */ |
| |
| static inline re_dfastate_t * |
| __attribute ((always_inline)) internal_function |
| acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, |
| int idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| if (dfa->init_state->has_constraint) |
| { |
| unsigned int context; |
| context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); |
| if (IS_WORD_CONTEXT (context)) |
| return dfa->init_state_word; |
| else if (IS_ORDINARY_CONTEXT (context)) |
| return dfa->init_state; |
| else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) |
| return dfa->init_state_begbuf; |
| else if (IS_NEWLINE_CONTEXT (context)) |
| return dfa->init_state_nl; |
| else if (IS_BEGBUF_CONTEXT (context)) |
| { |
| /* It is relatively rare case, then calculate on demand. */ |
| return re_acquire_state_context (err, dfa, |
| dfa->init_state->entrance_nodes, |
| context); |
| } |
| else |
| /* Must not happen? */ |
| return dfa->init_state; |
| } |
| else |
| return dfa->init_state; |
| } |
| |
| /* Check whether the regular expression match input string INPUT or not, |
| and return the index where the matching end, return -1 if not match, |
| or return -2 in case of an error. |
| FL_LONGEST_MATCH means we want the POSIX longest matching. |
| If P_MATCH_FIRST is not NULL, and the match fails, it is set to the |
| next place where we may want to try matching. |
| Note that the matcher assume that the maching starts from the current |
| index of the buffer. */ |
| |
| static int |
| internal_function |
| check_matching (re_match_context_t *mctx, int fl_longest_match, |
| int *p_match_first) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err; |
| int match = 0; |
| int match_last = -1; |
| int cur_str_idx = re_string_cur_idx (&mctx->input); |
| re_dfastate_t *cur_state; |
| int at_init_state = p_match_first != NULL; |
| int next_start_idx = cur_str_idx; |
| |
| err = REG_NOERROR; |
| cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); |
| /* An initial state must not be NULL (invalid). */ |
| if (BE (cur_state == NULL, 0)) |
| { |
| assert (err == REG_ESPACE); |
| return -2; |
| } |
| |
| if (mctx->state_log != NULL) |
| { |
| mctx->state_log[cur_str_idx] = cur_state; |
| |
| /* Check OP_OPEN_SUBEXP in the initial state in case that we use them |
| later. E.g. Processing back references. */ |
| if (BE (dfa->nbackref, 0)) |
| { |
| at_init_state = 0; |
| err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| if (cur_state->has_backref) |
| { |
| err = transit_state_bkref (mctx, &cur_state->nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| } |
| |
| /* If the RE accepts NULL string. */ |
| if (BE (cur_state->halt, 0)) |
| { |
| if (!cur_state->has_constraint |
| || check_halt_state_context (mctx, cur_state, cur_str_idx)) |
| { |
| if (!fl_longest_match) |
| return cur_str_idx; |
| else |
| { |
| match_last = cur_str_idx; |
| match = 1; |
| } |
| } |
| } |
| |
| while (!re_string_eoi (&mctx->input)) |
| { |
| re_dfastate_t *old_state = cur_state; |
| int next_char_idx = re_string_cur_idx (&mctx->input) + 1; |
| |
| if (BE (next_char_idx >= mctx->input.bufs_len, 0) |
| || (BE (next_char_idx >= mctx->input.valid_len, 0) |
| && mctx->input.valid_len < mctx->input.len)) |
| { |
| err = extend_buffers (mctx); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| assert (err == REG_ESPACE); |
| return -2; |
| } |
| } |
| |
| cur_state = transit_state (&err, mctx, cur_state); |
| if (mctx->state_log != NULL) |
| cur_state = merge_state_with_log (&err, mctx, cur_state); |
| |
| if (cur_state == NULL) |
| { |
| /* Reached the invalid state or an error. Try to recover a valid |
| state using the state log, if available and if we have not |
| already found a valid (even if not the longest) match. */ |
| if (BE (err != REG_NOERROR, 0)) |
| return -2; |
| |
| if (mctx->state_log == NULL |
| || (match && !fl_longest_match) |
| || (cur_state = find_recover_state (&err, mctx)) == NULL) |
| break; |
| } |
| |
| if (BE (at_init_state, 0)) |
| { |
| if (old_state == cur_state) |
| next_start_idx = next_char_idx; |
| else |
| at_init_state = 0; |
| } |
| |
| if (cur_state->halt) |
| { |
| /* Reached a halt state. |
| Check the halt state can satisfy the current context. */ |
| if (!cur_state->has_constraint |
| || check_halt_state_context (mctx, cur_state, |
| re_string_cur_idx (&mctx->input))) |
| { |
| /* We found an appropriate halt state. */ |
| match_last = re_string_cur_idx (&mctx->input); |
| match = 1; |
| |
| /* We found a match, do not modify match_first below. */ |
| p_match_first = NULL; |
| if (!fl_longest_match) |
| break; |
| } |
| } |
| } |
| |
| if (p_match_first) |
| *p_match_first += next_start_idx; |
| |
| return match_last; |
| } |
| |
| /* Check NODE match the current context. */ |
| |
| static int |
| internal_function |
| check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context) |
| { |
| re_token_type_t type = dfa->nodes[node].type; |
| unsigned int constraint = dfa->nodes[node].constraint; |
| if (type != END_OF_RE) |
| return 0; |
| if (!constraint) |
| return 1; |
| if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) |
| return 0; |
| return 1; |
| } |
| |
| /* Check the halt state STATE match the current context. |
| Return 0 if not match, if the node, STATE has, is a halt node and |
| match the context, return the node. */ |
| |
| static int |
| internal_function |
| check_halt_state_context (const re_match_context_t *mctx, |
| const re_dfastate_t *state, int idx) |
| { |
| int i; |
| unsigned int context; |
| #ifdef DEBUG |
| assert (state->halt); |
| #endif |
| context = re_string_context_at (&mctx->input, idx, mctx->eflags); |
| for (i = 0; i < state->nodes.nelem; ++i) |
| if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) |
| return state->nodes.elems[i]; |
| return 0; |
| } |
| |
| /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA |
| corresponding to the DFA). |
| Return the destination node, and update EPS_VIA_NODES, return -1 in case |
| of errors. */ |
| |
| static int |
| internal_function |
| proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs, |
| int *pidx, int node, re_node_set *eps_via_nodes, |
| struct re_fail_stack_t *fs) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int i, err; |
| if (IS_EPSILON_NODE (dfa->nodes[node].type)) |
| { |
| re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; |
| re_node_set *edests = &dfa->edests[node]; |
| int dest_node; |
| err = re_node_set_insert (eps_via_nodes, node); |
| if (BE (err < 0, 0)) |
| return -2; |
| /* Pick up a valid destination, or return -1 if none is found. */ |
| for (dest_node = -1, i = 0; i < edests->nelem; ++i) |
| { |
| int candidate = edests->elems[i]; |
| if (!re_node_set_contains (cur_nodes, candidate)) |
| continue; |
| if (dest_node == -1) |
| dest_node = candidate; |
| |
| else |
| { |
| /* In order to avoid infinite loop like "(a*)*", return the second |
| epsilon-transition if the first was already considered. */ |
| if (re_node_set_contains (eps_via_nodes, dest_node)) |
| return candidate; |
| |
| /* Otherwise, push the second epsilon-transition on the fail stack. */ |
| else if (fs != NULL |
| && push_fail_stack (fs, *pidx, candidate, nregs, regs, |
| eps_via_nodes)) |
| return -2; |
| |
| /* We know we are going to exit. */ |
| break; |
| } |
| } |
| return dest_node; |
| } |
| else |
| { |
| int naccepted = 0; |
| re_token_type_t type = dfa->nodes[node].type; |
| |
| #ifdef RE_ENABLE_I18N |
| if (dfa->nodes[node].accept_mb) |
| naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); |
| else |
| #endif /* RE_ENABLE_I18N */ |
| if (type == OP_BACK_REF) |
| { |
| int subexp_idx = dfa->nodes[node].opr.idx + 1; |
| naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; |
| if (fs != NULL) |
| { |
| if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) |
| return -1; |
| else if (naccepted) |
| { |
| char *buf = (char *) re_string_get_buffer (&mctx->input); |
| if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, |
| naccepted) != 0) |
| return -1; |
| } |
| } |
| |
| if (naccepted == 0) |
| { |
| int dest_node; |
| err = re_node_set_insert (eps_via_nodes, node); |
| if (BE (err < 0, 0)) |
| return -2; |
| dest_node = dfa->edests[node].elems[0]; |
| if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
| dest_node)) |
| return dest_node; |
| } |
| } |
| |
| if (naccepted != 0 |
| || check_node_accept (mctx, dfa->nodes + node, *pidx)) |
| { |
| int dest_node = dfa->nexts[node]; |
| *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; |
| if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL |
| || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
| dest_node))) |
| return -1; |
| re_node_set_empty (eps_via_nodes); |
| return dest_node; |
| } |
| } |
| return -1; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node, |
| int nregs, regmatch_t *regs, re_node_set *eps_via_nodes) |
| { |
| reg_errcode_t err; |
| int num = fs->num++; |
| if (fs->num == fs->alloc) |
| { |
| struct re_fail_stack_ent_t *new_array; |
| new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) |
| * fs->alloc * 2)); |
| if (new_array == NULL) |
| return REG_ESPACE; |
| fs->alloc *= 2; |
| fs->stack = new_array; |
| } |
| fs->stack[num].idx = str_idx; |
| fs->stack[num].node = dest_node; |
| fs->stack[num].regs = re_malloc (regmatch_t, nregs); |
| if (fs->stack[num].regs == NULL) |
| return REG_ESPACE; |
| memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); |
| err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); |
| return err; |
| } |
| |
| static int |
| internal_function |
| pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs, |
| regmatch_t *regs, re_node_set *eps_via_nodes) |
| { |
| int num = --fs->num; |
| assert (num >= 0); |
| *pidx = fs->stack[num].idx; |
| memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); |
| re_node_set_free (eps_via_nodes); |
| re_free (fs->stack[num].regs); |
| *eps_via_nodes = fs->stack[num].eps_via_nodes; |
| return fs->stack[num].node; |
| } |
| |
| /* Set the positions where the subexpressions are starts/ends to registers |
| PMATCH. |
| Note: We assume that pmatch[0] is already set, and |
| pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ |
| |
| static reg_errcode_t |
| internal_function |
| set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, |
| regmatch_t *pmatch, int fl_backtrack) |
| { |
| const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; |
| int idx, cur_node; |
| re_node_set eps_via_nodes; |
| struct re_fail_stack_t *fs; |
| struct re_fail_stack_t fs_body = { 0, 2, NULL }; |
| regmatch_t *prev_idx_match; |
| int prev_idx_match_malloced = 0; |
| |
| #ifdef DEBUG |
| assert (nmatch > 1); |
| assert (mctx->state_log != NULL); |
| #endif |
| if (fl_backtrack) |
| { |
| fs = &fs_body; |
| fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); |
| if (fs->stack == NULL) |
| return REG_ESPACE; |
| } |
| else |
| fs = NULL; |
| |
| cur_node = dfa->init_node; |
| re_node_set_init_empty (&eps_via_nodes); |
| |
| #ifdef HAVE_ALLOCA |
| if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) |
| prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); |
| else |
| #endif |
| { |
| prev_idx_match = re_malloc (regmatch_t, nmatch); |
| if (prev_idx_match == NULL) |
| { |
| free_fail_stack_return (fs); |
| return REG_ESPACE; |
| } |
| prev_idx_match_malloced = 1; |
| } |
| memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
| |
| for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) |
| { |
| update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); |
| |
| if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) |
| { |
| int reg_idx; |
| if (fs) |
| { |
| for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
| if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) |
| break; |
| if (reg_idx == nmatch) |
| { |
| re_node_set_free (&eps_via_nodes); |
| if (prev_idx_match_malloced) |
| re_free (prev_idx_match); |
| return free_fail_stack_return (fs); |
| } |
| cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
| &eps_via_nodes); |
| } |
| else |
| { |
| re_node_set_free (&eps_via_nodes); |
| if (prev_idx_match_malloced) |
| re_free (prev_idx_match); |
| return REG_NOERROR; |
| } |
| } |
| |
| /* Proceed to next node. */ |
| cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, |
| &eps_via_nodes, fs); |
| |
| if (BE (cur_node < 0, 0)) |
| { |
| if (BE (cur_node == -2, 0)) |
| { |
| re_node_set_free (&eps_via_nodes); |
| if (prev_idx_match_malloced) |
| re_free (prev_idx_match); |
| free_fail_stack_return (fs); |
| return REG_ESPACE; |
| } |
| if (fs) |
| cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
| &eps_via_nodes); |
| else |
| { |
| re_node_set_free (&eps_via_nodes); |
| if (prev_idx_match_malloced) |
| re_free (prev_idx_match); |
| return REG_NOMATCH; |
| } |
| } |
| } |
| re_node_set_free (&eps_via_nodes); |
| if (prev_idx_match_malloced) |
| re_free (prev_idx_match); |
| return free_fail_stack_return (fs); |
| } |
| |
| static reg_errcode_t |
| internal_function |
| free_fail_stack_return (struct re_fail_stack_t *fs) |
| { |
| if (fs) |
| { |
| int fs_idx; |
| for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) |
| { |
| re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); |
| re_free (fs->stack[fs_idx].regs); |
| } |
| re_free (fs->stack); |
| } |
| return REG_NOERROR; |
| } |
| |
| static void |
| internal_function |
| update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
| regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch) |
| { |
| int type = dfa->nodes[cur_node].type; |
| if (type == OP_OPEN_SUBEXP) |
| { |
| int reg_num = dfa->nodes[cur_node].opr.idx + 1; |
| |
| /* We are at the first node of this sub expression. */ |
| if (reg_num < nmatch) |
| { |
| pmatch[reg_num].rm_so = cur_idx; |
| pmatch[reg_num].rm_eo = -1; |
| } |
| } |
| else if (type == OP_CLOSE_SUBEXP) |
| { |
| int reg_num = dfa->nodes[cur_node].opr.idx + 1; |
| if (reg_num < nmatch) |
| { |
| /* We are at the last node of this sub expression. */ |
| if (pmatch[reg_num].rm_so < cur_idx) |
| { |
| pmatch[reg_num].rm_eo = cur_idx; |
| /* This is a non-empty match or we are not inside an optional |
| subexpression. Accept this right away. */ |
| memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
| } |
| else |
| { |
| if (dfa->nodes[cur_node].opt_subexp |
| && prev_idx_match[reg_num].rm_so != -1) |
| /* We transited through an empty match for an optional |
| subexpression, like (a?)*, and this is not the subexp's |
| first match. Copy back the old content of the registers |
| so that matches of an inner subexpression are undone as |
| well, like in ((a?))*. */ |
| memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); |
| else |
| /* We completed a subexpression, but it may be part of |
| an optional one, so do not update PREV_IDX_MATCH. */ |
| pmatch[reg_num].rm_eo = cur_idx; |
| } |
| } |
| } |
| } |
| |
| /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 |
| and sift the nodes in each states according to the following rules. |
| Updated state_log will be wrote to STATE_LOG. |
| |
| Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... |
| 1. When STR_IDX == MATCH_LAST(the last index in the state_log): |
| If `a' isn't the LAST_NODE and `a' can't epsilon transit to |
| the LAST_NODE, we throw away the node `a'. |
| 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts |
| string `s' and transit to `b': |
| i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw |
| away the node `a'. |
| ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is |
| thrown away, we throw away the node `a'. |
| 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': |
| i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the |
| node `a'. |
| ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, |
| we throw away the node `a'. */ |
| |
| #define STATE_NODE_CONTAINS(state,node) \ |
| ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) |
| |
| static reg_errcode_t |
| internal_function |
| sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) |
| { |
| reg_errcode_t err; |
| int null_cnt = 0; |
| int str_idx = sctx->last_str_idx; |
| re_node_set cur_dest; |
| |
| #ifdef DEBUG |
| assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); |
| #endif |
| |
| /* Build sifted state_log[str_idx]. It has the nodes which can epsilon |
| transit to the last_node and the last_node itself. */ |
| err = re_node_set_init_1 (&cur_dest, sctx->last_node); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| |
| /* Then check each states in the state_log. */ |
| while (str_idx > 0) |
| { |
| /* Update counters. */ |
| null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; |
| if (null_cnt > mctx->max_mb_elem_len) |
| { |
| memset (sctx->sifted_states, '\0', |
| sizeof (re_dfastate_t *) * str_idx); |
| re_node_set_free (&cur_dest); |
| return REG_NOERROR; |
| } |
| re_node_set_empty (&cur_dest); |
| --str_idx; |
| |
| if (mctx->state_log[str_idx]) |
| { |
| err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| |
| /* Add all the nodes which satisfy the following conditions: |
| - It can epsilon transit to a node in CUR_DEST. |
| - It is in CUR_SRC. |
| And update state_log. */ |
| err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| err = REG_NOERROR; |
| free_return: |
| re_node_set_free (&cur_dest); |
| return err; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| int str_idx, re_node_set *cur_dest) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; |
| int i; |
| |
| /* Then build the next sifted state. |
| We build the next sifted state on `cur_dest', and update |
| `sifted_states[str_idx]' with `cur_dest'. |
| Note: |
| `cur_dest' is the sifted state from `state_log[str_idx + 1]'. |
| `cur_src' points the node_set of the old `state_log[str_idx]' |
| (with the epsilon nodes pre-filtered out). */ |
| for (i = 0; i < cur_src->nelem; i++) |
| { |
| int prev_node = cur_src->elems[i]; |
| int naccepted = 0; |
| int ret; |
| |
| #ifdef DEBUG |
| re_token_type_t type = dfa->nodes[prev_node].type; |
| assert (!IS_EPSILON_NODE (type)); |
| #endif |
| #ifdef RE_ENABLE_I18N |
| /* If the node may accept `multi byte'. */ |
| if (dfa->nodes[prev_node].accept_mb) |
| naccepted = sift_states_iter_mb (mctx, sctx, prev_node, |
| str_idx, sctx->last_str_idx); |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* We don't check backreferences here. |
| See update_cur_sifted_state(). */ |
| if (!naccepted |
| && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) |
| && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], |
| dfa->nexts[prev_node])) |
| naccepted = 1; |
| |
| if (naccepted == 0) |
| continue; |
| |
| if (sctx->limits.nelem) |
| { |
| int to_idx = str_idx + naccepted; |
| if (check_dst_limits (mctx, &sctx->limits, |
| dfa->nexts[prev_node], to_idx, |
| prev_node, str_idx)) |
| continue; |
| } |
| ret = re_node_set_insert (cur_dest, prev_node); |
| if (BE (ret == -1, 0)) |
| return REG_ESPACE; |
| } |
| |
| return REG_NOERROR; |
| } |
| |
| /* Helper functions. */ |
| |
| static reg_errcode_t |
| internal_function |
| clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx) |
| { |
| int top = mctx->state_log_top; |
| |
| if (next_state_log_idx >= mctx->input.bufs_len |
| || (next_state_log_idx >= mctx->input.valid_len |
| && mctx->input.valid_len < mctx->input.len)) |
| { |
| reg_errcode_t err; |
| err = extend_buffers (mctx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| |
| if (top < next_state_log_idx) |
| { |
| memset (mctx->state_log + top + 1, '\0', |
| sizeof (re_dfastate_t *) * (next_state_log_idx - top)); |
| mctx->state_log_top = next_state_log_idx; |
| } |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, |
| re_dfastate_t **src, int num) |
| { |
| int st_idx; |
| reg_errcode_t err; |
| for (st_idx = 0; st_idx < num; ++st_idx) |
| { |
| if (dst[st_idx] == NULL) |
| dst[st_idx] = src[st_idx]; |
| else if (src[st_idx] != NULL) |
| { |
| re_node_set merged_set; |
| err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, |
| &src[st_idx]->nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); |
| re_node_set_free (&merged_set); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| update_cur_sifted_state (const re_match_context_t *mctx, |
| re_sift_context_t *sctx, int str_idx, |
| re_node_set *dest_nodes) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err = REG_NOERROR; |
| const re_node_set *candidates; |
| candidates = ((mctx->state_log[str_idx] == NULL) ? NULL |
| : &mctx->state_log[str_idx]->nodes); |
| |
| if (dest_nodes->nelem == 0) |
| sctx->sifted_states[str_idx] = NULL; |
| else |
| { |
| if (candidates) |
| { |
| /* At first, add the nodes which can epsilon transit to a node in |
| DEST_NODE. */ |
| err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| /* Then, check the limitations in the current sift_context. */ |
| if (sctx->limits.nelem) |
| { |
| err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, |
| mctx->bkref_ents, str_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| |
| sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| |
| if (candidates && mctx->state_log[str_idx]->has_backref) |
| { |
| err = sift_states_bkref (mctx, sctx, str_idx, candidates); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, |
| const re_node_set *candidates) |
| { |
| reg_errcode_t err = REG_NOERROR; |
| int i; |
| |
| re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| if (!state->inveclosure.alloc) |
| { |
| err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); |
| if (BE (err != REG_NOERROR, 0)) |
| return REG_ESPACE; |
| for (i = 0; i < dest_nodes->nelem; i++) |
| { |
| err = re_node_set_merge (&state->inveclosure, |
| dfa->inveclosures + dest_nodes->elems[i]); |
| if (BE (err != REG_NOERROR, 0)) |
| return REG_ESPACE; |
| } |
| } |
| return re_node_set_add_intersect (dest_nodes, candidates, |
| &state->inveclosure); |
| } |
| |
| static reg_errcode_t |
| internal_function |
| sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes, |
| const re_node_set *candidates) |
| { |
| int ecl_idx; |
| reg_errcode_t err; |
| re_node_set *inv_eclosure = dfa->inveclosures + node; |
| re_node_set except_nodes; |
| re_node_set_init_empty (&except_nodes); |
| for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
| { |
| int cur_node = inv_eclosure->elems[ecl_idx]; |
| if (cur_node == node) |
| continue; |
| if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) |
| { |
| int edst1 = dfa->edests[cur_node].elems[0]; |
| int edst2 = ((dfa->edests[cur_node].nelem > 1) |
| ? dfa->edests[cur_node].elems[1] : -1); |
| if ((!re_node_set_contains (inv_eclosure, edst1) |
| && re_node_set_contains (dest_nodes, edst1)) |
| || (edst2 > 0 |
| && !re_node_set_contains (inv_eclosure, edst2) |
| && re_node_set_contains (dest_nodes, edst2))) |
| { |
| err = re_node_set_add_intersect (&except_nodes, candidates, |
| dfa->inveclosures + cur_node); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&except_nodes); |
| return err; |
| } |
| } |
| } |
| } |
| for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
| { |
| int cur_node = inv_eclosure->elems[ecl_idx]; |
| if (!re_node_set_contains (&except_nodes, cur_node)) |
| { |
| int idx = re_node_set_contains (dest_nodes, cur_node) - 1; |
| re_node_set_remove_at (dest_nodes, idx); |
| } |
| } |
| re_node_set_free (&except_nodes); |
| return REG_NOERROR; |
| } |
| |
| static int |
| internal_function |
| check_dst_limits (const re_match_context_t *mctx, re_node_set *limits, |
| int dst_node, int dst_idx, int src_node, int src_idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int lim_idx, src_pos, dst_pos; |
| |
| int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); |
| int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); |
| for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
| { |
| int subexp_idx; |
| struct re_backref_cache_entry *ent; |
| ent = mctx->bkref_ents + limits->elems[lim_idx]; |
| subexp_idx = dfa->nodes[ent->node].opr.idx; |
| |
| dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
| subexp_idx, dst_node, dst_idx, |
| dst_bkref_idx); |
| src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
| subexp_idx, src_node, src_idx, |
| src_bkref_idx); |
| |
| /* In case of: |
| <src> <dst> ( <subexp> ) |
| ( <subexp> ) <src> <dst> |
| ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ |
| if (src_pos == dst_pos) |
| continue; /* This is unrelated limitation. */ |
| else |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int |
| internal_function |
| check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, |
| int subexp_idx, int from_node, int bkref_idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| const re_node_set *eclosures = dfa->eclosures + from_node; |
| int node_idx; |
| |
| /* Else, we are on the boundary: examine the nodes on the epsilon |
| closure. */ |
| for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) |
| { |
| int node = eclosures->elems[node_idx]; |
| switch (dfa->nodes[node].type) |
| { |
| case OP_BACK_REF: |
| if (bkref_idx != -1) |
| { |
| struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; |
| do |
| { |
| int dst, cpos; |
| |
| if (ent->node != node) |
| continue; |
| |
| if (subexp_idx < BITSET_WORD_BITS |
| && !(ent->eps_reachable_subexps_map |
| & ((bitset_word_t) 1 << subexp_idx))) |
| continue; |
| |
| /* Recurse trying to reach the OP_OPEN_SUBEXP and |
| OP_CLOSE_SUBEXP cases below. But, if the |
| destination node is the same node as the source |
| node, don't recurse because it would cause an |
| infinite loop: a regex that exhibits this behavior |
| is ()\1*\1* */ |
| dst = dfa->edests[node].elems[0]; |
| if (dst == from_node) |
| { |
| if (boundaries & 1) |
| return -1; |
| else /* if (boundaries & 2) */ |
| return 0; |
| } |
| |
| cpos = |
| check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
| dst, bkref_idx); |
| if (cpos == -1 /* && (boundaries & 1) */) |
| return -1; |
| if (cpos == 0 && (boundaries & 2)) |
| return 0; |
| |
| if (subexp_idx < BITSET_WORD_BITS) |
| ent->eps_reachable_subexps_map |
| &= ~((bitset_word_t) 1 << subexp_idx); |
| } |
| while (ent++->more); |
| } |
| break; |
| |
| case OP_OPEN_SUBEXP: |
| if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) |
| return -1; |
| break; |
| |
| case OP_CLOSE_SUBEXP: |
| if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) |
| return 0; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return (boundaries & 2) ? 1 : 0; |
| } |
| |
| static int |
| internal_function |
| check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit, |
| int subexp_idx, int from_node, int str_idx, |
| int bkref_idx) |
| { |
| struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; |
| int boundaries; |
| |
| /* If we are outside the range of the subexpression, return -1 or 1. */ |
| if (str_idx < lim->subexp_from) |
| return -1; |
| |
| if (lim->subexp_to < str_idx) |
| return 1; |
| |
| /* If we are within the subexpression, return 0. */ |
| boundaries = (str_idx == lim->subexp_from); |
| boundaries |= (str_idx == lim->subexp_to) << 1; |
| if (boundaries == 0) |
| return 0; |
| |
| /* Else, examine epsilon closure. */ |
| return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
| from_node, bkref_idx); |
| } |
| |
| /* Check the limitations of sub expressions LIMITS, and remove the nodes |
| which are against limitations from DEST_NODES. */ |
| |
| static reg_errcode_t |
| internal_function |
| check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, |
| const re_node_set *candidates, re_node_set *limits, |
| struct re_backref_cache_entry *bkref_ents, int str_idx) |
| { |
| reg_errcode_t err; |
| int node_idx, lim_idx; |
| |
| for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
| { |
| int subexp_idx; |
| struct re_backref_cache_entry *ent; |
| ent = bkref_ents + limits->elems[lim_idx]; |
| |
| if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) |
| continue; /* This is unrelated limitation. */ |
| |
| subexp_idx = dfa->nodes[ent->node].opr.idx; |
| if (ent->subexp_to == str_idx) |
| { |
| int ops_node = -1; |
| int cls_node = -1; |
| for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| { |
| int node = dest_nodes->elems[node_idx]; |
| re_token_type_t type = dfa->nodes[node].type; |
| if (type == OP_OPEN_SUBEXP |
| && subexp_idx == dfa->nodes[node].opr.idx) |
| ops_node = node; |
| else if (type == OP_CLOSE_SUBEXP |
| && subexp_idx == dfa->nodes[node].opr.idx) |
| cls_node = node; |
| } |
| |
| /* Check the limitation of the open subexpression. */ |
| /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ |
| if (ops_node >= 0) |
| { |
| err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, |
| candidates); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| |
| /* Check the limitation of the close subexpression. */ |
| if (cls_node >= 0) |
| for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| { |
| int node = dest_nodes->elems[node_idx]; |
| if (!re_node_set_contains (dfa->inveclosures + node, |
| cls_node) |
| && !re_node_set_contains (dfa->eclosures + node, |
| cls_node)) |
| { |
| /* It is against this limitation. |
| Remove it form the current sifted state. */ |
| err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
| candidates); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| --node_idx; |
| } |
| } |
| } |
| else /* (ent->subexp_to != str_idx) */ |
| { |
| for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
| { |
| int node = dest_nodes->elems[node_idx]; |
| re_token_type_t type = dfa->nodes[node].type; |
| if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) |
| { |
| if (subexp_idx != dfa->nodes[node].opr.idx) |
| continue; |
| /* It is against this limitation. |
| Remove it form the current sifted state. */ |
| err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
| candidates); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| static reg_errcode_t |
| internal_function |
| sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| int str_idx, const re_node_set *candidates) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err; |
| int node_idx, node; |
| re_sift_context_t local_sctx; |
| int first_idx = search_cur_bkref_entry (mctx, str_idx); |
| |
| if (first_idx == -1) |
| return REG_NOERROR; |
| |
| local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ |
| |
| for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) |
| { |
| int enabled_idx; |
| re_token_type_t type; |
| struct re_backref_cache_entry *entry; |
| node = candidates->elems[node_idx]; |
| type = dfa->nodes[node].type; |
| /* Avoid infinite loop for the REs like "()\1+". */ |
| if (node == sctx->last_node && str_idx == sctx->last_str_idx) |
| continue; |
| if (type != OP_BACK_REF) |
| continue; |
| |
| entry = mctx->bkref_ents + first_idx; |
| enabled_idx = first_idx; |
| do |
| { |
| int subexp_len; |
| int to_idx; |
| int dst_node; |
| int ret; |
| re_dfastate_t *cur_state; |
| |
| if (entry->node != node) |
| continue; |
| subexp_len = entry->subexp_to - entry->subexp_from; |
| to_idx = str_idx + subexp_len; |
| dst_node = (subexp_len ? dfa->nexts[node] |
| : dfa->edests[node].elems[0]); |
| |
| if (to_idx > sctx->last_str_idx |
| || sctx->sifted_states[to_idx] == NULL |
| || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) |
| || check_dst_limits (mctx, &sctx->limits, node, |
| str_idx, dst_node, to_idx)) |
| continue; |
| |
| if (local_sctx.sifted_states == NULL) |
| { |
| local_sctx = *sctx; |
| err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| local_sctx.last_node = node; |
| local_sctx.last_str_idx = str_idx; |
| ret = re_node_set_insert (&local_sctx.limits, enabled_idx); |
| if (BE (ret < 0, 0)) |
| { |
| err = REG_ESPACE; |
| goto free_return; |
| } |
| cur_state = local_sctx.sifted_states[str_idx]; |
| err = sift_states_backward (mctx, &local_sctx); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| if (sctx->limited_states != NULL) |
| { |
| err = merge_state_array (dfa, sctx->limited_states, |
| local_sctx.sifted_states, |
| str_idx + 1); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| local_sctx.sifted_states[str_idx] = cur_state; |
| re_node_set_remove (&local_sctx.limits, enabled_idx); |
| |
| /* mctx->bkref_ents may have changed, reload the pointer. */ |
| entry = mctx->bkref_ents + enabled_idx; |
| } |
| while (enabled_idx++, entry++->more); |
| } |
| err = REG_NOERROR; |
| free_return: |
| if (local_sctx.sifted_states != NULL) |
| { |
| re_node_set_free (&local_sctx.limits); |
| } |
| |
| return err; |
| } |
| |
| |
| #ifdef RE_ENABLE_I18N |
| static int |
| internal_function |
| sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, |
| int node_idx, int str_idx, int max_str_idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int naccepted; |
| /* Check the node can accept `multi byte'. */ |
| naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); |
| if (naccepted > 0 && str_idx + naccepted <= max_str_idx && |
| !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], |
| dfa->nexts[node_idx])) |
| /* The node can't accept the `multi byte', or the |
| destination was already thrown away, then the node |
| could't accept the current input `multi byte'. */ |
| naccepted = 0; |
| /* Otherwise, it is sure that the node could accept |
| `naccepted' bytes input. */ |
| return naccepted; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| |
| /* Functions for state transition. */ |
| |
| /* Return the next state to which the current state STATE will transit by |
| accepting the current input byte, and update STATE_LOG if necessary. |
| If STATE can accept a multibyte char/collating element/back reference |
| update the destination of STATE_LOG. */ |
| |
| static re_dfastate_t * |
| internal_function |
| transit_state (reg_errcode_t *err, re_match_context_t *mctx, |
| re_dfastate_t *state) |
| { |
| re_dfastate_t **trtable; |
| unsigned char ch; |
| |
| #ifdef RE_ENABLE_I18N |
| /* If the current state can accept multibyte. */ |
| if (BE (state->accept_mb, 0)) |
| { |
| *err = transit_state_mb (mctx, state); |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* Then decide the next state with the single byte. */ |
| #if 0 |
| if (0) |
| /* don't use transition table */ |
| return transit_state_sb (err, mctx, state); |
| #endif |
| |
| /* Use transition table */ |
| ch = re_string_fetch_byte (&mctx->input); |
| for (;;) |
| { |
| trtable = state->trtable; |
| if (BE (trtable != NULL, 1)) |
| return trtable[ch]; |
| |
| trtable = state->word_trtable; |
| if (BE (trtable != NULL, 1)) |
| { |
| unsigned int context; |
| context |
| = re_string_context_at (&mctx->input, |
| re_string_cur_idx (&mctx->input) - 1, |
| mctx->eflags); |
| if (IS_WORD_CONTEXT (context)) |
| return trtable[ch + SBC_MAX]; |
| else |
| return trtable[ch]; |
| } |
| |
| if (!build_trtable (mctx->dfa, state)) |
| { |
| *err = REG_ESPACE; |
| return NULL; |
| } |
| |
| /* Retry, we now have a transition table. */ |
| } |
| } |
| |
| /* Update the state_log if we need */ |
| re_dfastate_t * |
| internal_function |
| merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, |
| re_dfastate_t *next_state) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int cur_idx = re_string_cur_idx (&mctx->input); |
| |
| if (cur_idx > mctx->state_log_top) |
| { |
| mctx->state_log[cur_idx] = next_state; |
| mctx->state_log_top = cur_idx; |
| } |
| else if (mctx->state_log[cur_idx] == 0) |
| { |
| mctx->state_log[cur_idx] = next_state; |
| } |
| else |
| { |
| re_dfastate_t *pstate; |
| unsigned int context; |
| re_node_set next_nodes, *log_nodes, *table_nodes = NULL; |
| /* If (state_log[cur_idx] != 0), it implies that cur_idx is |
| the destination of a multibyte char/collating element/ |
| back reference. Then the next state is the union set of |
| these destinations and the results of the transition table. */ |
| pstate = mctx->state_log[cur_idx]; |
| log_nodes = pstate->entrance_nodes; |
| if (next_state != NULL) |
| { |
| table_nodes = next_state->entrance_nodes; |
| *err = re_node_set_init_union (&next_nodes, table_nodes, |
| log_nodes); |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| } |
| else |
| next_nodes = *log_nodes; |
| /* Note: We already add the nodes of the initial state, |
| then we don't need to add them here. */ |
| |
| context = re_string_context_at (&mctx->input, |
| re_string_cur_idx (&mctx->input) - 1, |
| mctx->eflags); |
| next_state = mctx->state_log[cur_idx] |
| = re_acquire_state_context (err, dfa, &next_nodes, context); |
| /* We don't need to check errors here, since the return value of |
| this function is next_state and ERR is already set. */ |
| |
| if (table_nodes != NULL) |
| re_node_set_free (&next_nodes); |
| } |
| |
| if (BE (dfa->nbackref, 0) && next_state != NULL) |
| { |
| /* Check OP_OPEN_SUBEXP in the current state in case that we use them |
| later. We must check them here, since the back references in the |
| next state might use them. */ |
| *err = check_subexp_matching_top (mctx, &next_state->nodes, |
| cur_idx); |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| |
| /* If the next state has back references. */ |
| if (next_state->has_backref) |
| { |
| *err = transit_state_bkref (mctx, &next_state->nodes); |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| next_state = mctx->state_log[cur_idx]; |
| } |
| } |
| |
| return next_state; |
| } |
| |
| /* Skip bytes in the input that correspond to part of a |
| multi-byte match, then look in the log for a state |
| from which to restart matching. */ |
| re_dfastate_t * |
| internal_function |
| find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) |
| { |
| re_dfastate_t *cur_state; |
| do |
| { |
| int max = mctx->state_log_top; |
| int cur_str_idx = re_string_cur_idx (&mctx->input); |
| |
| do |
| { |
| if (++cur_str_idx > max) |
| return NULL; |
| re_string_skip_bytes (&mctx->input, 1); |
| } |
| while (mctx->state_log[cur_str_idx] == NULL); |
| |
| cur_state = merge_state_with_log (err, mctx, NULL); |
| } |
| while (*err == REG_NOERROR && cur_state == NULL); |
| return cur_state; |
| } |
| |
| /* Helper functions for transit_state. */ |
| |
| /* From the node set CUR_NODES, pick up the nodes whose types are |
| OP_OPEN_SUBEXP and which have corresponding back references in the regular |
| expression. And register them to use them later for evaluating the |
| correspoding back references. */ |
| |
| static reg_errcode_t |
| internal_function |
| check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, |
| int str_idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int node_idx; |
| reg_errcode_t err; |
| |
| /* TODO: This isn't efficient. |
| Because there might be more than one nodes whose types are |
| OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
| nodes. |
| E.g. RE: (a){2} */ |
| for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) |
| { |
| int node = cur_nodes->elems[node_idx]; |
| if (dfa->nodes[node].type == OP_OPEN_SUBEXP |
| && dfa->nodes[node].opr.idx < BITSET_WORD_BITS |
| && (dfa->used_bkref_map |
| & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) |
| { |
| err = match_ctx_add_subtop (mctx, node, str_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| #if 0 |
| /* Return the next state to which the current state STATE will transit by |
| accepting the current input byte. */ |
| |
| static re_dfastate_t * |
| transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, |
| re_dfastate_t *state) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| re_node_set next_nodes; |
| re_dfastate_t *next_state; |
| int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); |
| unsigned int context; |
| |
| *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); |
| if (BE (*err != REG_NOERROR, 0)) |
| return NULL; |
| for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) |
| { |
| int cur_node = state->nodes.elems[node_cnt]; |
| if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) |
| { |
| *err = re_node_set_merge (&next_nodes, |
| dfa->eclosures + dfa->nexts[cur_node]); |
| if (BE (*err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return NULL; |
| } |
| } |
| } |
| context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); |
| next_state = re_acquire_state_context (err, dfa, &next_nodes, context); |
| /* We don't need to check errors here, since the return value of |
| this function is next_state and ERR is already set. */ |
| |
| re_node_set_free (&next_nodes); |
| re_string_skip_bytes (&mctx->input, 1); |
| return next_state; |
| } |
| #endif |
| |
| #ifdef RE_ENABLE_I18N |
| static reg_errcode_t |
| internal_function |
| transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err; |
| int i; |
| |
| for (i = 0; i < pstate->nodes.nelem; ++i) |
| { |
| re_node_set dest_nodes, *new_nodes; |
| int cur_node_idx = pstate->nodes.elems[i]; |
| int naccepted, dest_idx; |
| unsigned int context; |
| re_dfastate_t *dest_state; |
| |
| if (!dfa->nodes[cur_node_idx].accept_mb) |
| continue; |
| |
| if (dfa->nodes[cur_node_idx].constraint) |
| { |
| context = re_string_context_at (&mctx->input, |
| re_string_cur_idx (&mctx->input), |
| mctx->eflags); |
| if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, |
| context)) |
| continue; |
| } |
| |
| /* How many bytes the node can accept? */ |
| naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, |
| re_string_cur_idx (&mctx->input)); |
| if (naccepted == 0) |
| continue; |
| |
| /* The node can accepts `naccepted' bytes. */ |
| dest_idx = re_string_cur_idx (&mctx->input) + naccepted; |
| mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted |
| : mctx->max_mb_elem_len); |
| err = clean_state_log_if_needed (mctx, dest_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| #ifdef DEBUG |
| assert (dfa->nexts[cur_node_idx] != -1); |
| #endif |
| new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; |
| |
| dest_state = mctx->state_log[dest_idx]; |
| if (dest_state == NULL) |
| dest_nodes = *new_nodes; |
| else |
| { |
| err = re_node_set_init_union (&dest_nodes, |
| dest_state->entrance_nodes, new_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| context = re_string_context_at (&mctx->input, dest_idx - 1, |
| mctx->eflags); |
| mctx->state_log[dest_idx] |
| = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
| if (dest_state != NULL) |
| re_node_set_free (&dest_nodes); |
| if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) |
| return err; |
| } |
| return REG_NOERROR; |
| } |
| #endif /* RE_ENABLE_I18N */ |
| |
| static reg_errcode_t |
| internal_function |
| transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err; |
| int i; |
| int cur_str_idx = re_string_cur_idx (&mctx->input); |
| |
| for (i = 0; i < nodes->nelem; ++i) |
| { |
| int dest_str_idx, prev_nelem, bkc_idx; |
| int node_idx = nodes->elems[i]; |
| unsigned int context; |
| const re_token_t *node = dfa->nodes + node_idx; |
| re_node_set *new_dest_nodes; |
| |
| /* Check whether `node' is a backreference or not. */ |
| if (node->type != OP_BACK_REF) |
| continue; |
| |
| if (node->constraint) |
| { |
| context = re_string_context_at (&mctx->input, cur_str_idx, |
| mctx->eflags); |
| if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
| continue; |
| } |
| |
| /* `node' is a backreference. |
| Check the substring which the substring matched. */ |
| bkc_idx = mctx->nbkref_ents; |
| err = get_subexp (mctx, node_idx, cur_str_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| |
| /* And add the epsilon closures (which is `new_dest_nodes') of |
| the backreference to appropriate state_log. */ |
| #ifdef DEBUG |
| assert (dfa->nexts[node_idx] != -1); |
| #endif |
| for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) |
| { |
| int subexp_len; |
| re_dfastate_t *dest_state; |
| struct re_backref_cache_entry *bkref_ent; |
| bkref_ent = mctx->bkref_ents + bkc_idx; |
| if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) |
| continue; |
| subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; |
| new_dest_nodes = (subexp_len == 0 |
| ? dfa->eclosures + dfa->edests[node_idx].elems[0] |
| : dfa->eclosures + dfa->nexts[node_idx]); |
| dest_str_idx = (cur_str_idx + bkref_ent->subexp_to |
| - bkref_ent->subexp_from); |
| context = re_string_context_at (&mctx->input, dest_str_idx - 1, |
| mctx->eflags); |
| dest_state = mctx->state_log[dest_str_idx]; |
| prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 |
| : mctx->state_log[cur_str_idx]->nodes.nelem); |
| /* Add `new_dest_node' to state_log. */ |
| if (dest_state == NULL) |
| { |
| mctx->state_log[dest_str_idx] |
| = re_acquire_state_context (&err, dfa, new_dest_nodes, |
| context); |
| if (BE (mctx->state_log[dest_str_idx] == NULL |
| && err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| else |
| { |
| re_node_set dest_nodes; |
| err = re_node_set_init_union (&dest_nodes, |
| dest_state->entrance_nodes, |
| new_dest_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&dest_nodes); |
| goto free_return; |
| } |
| mctx->state_log[dest_str_idx] |
| = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
| re_node_set_free (&dest_nodes); |
| if (BE (mctx->state_log[dest_str_idx] == NULL |
| && err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| /* We need to check recursively if the backreference can epsilon |
| transit. */ |
| if (subexp_len == 0 |
| && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) |
| { |
| err = check_subexp_matching_top (mctx, new_dest_nodes, |
| cur_str_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| err = transit_state_bkref (mctx, new_dest_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| goto free_return; |
| } |
| } |
| } |
| err = REG_NOERROR; |
| free_return: |
| return err; |
| } |
| |
| /* Enumerate all the candidates which the backreference BKREF_NODE can match |
| at BKREF_STR_IDX, and register them by match_ctx_add_entry(). |
| Note that we might collect inappropriate candidates here. |
| However, the cost of checking them strictly here is too high, then we |
| delay these checking for prune_impossible_nodes(). */ |
| |
| static reg_errcode_t |
| internal_function |
| get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int subexp_num, sub_top_idx; |
| const char *buf = (const char *) re_string_get_buffer (&mctx->input); |
| /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ |
| int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); |
| if (cache_idx != -1) |
| { |
| const struct re_backref_cache_entry *entry |
| = mctx->bkref_ents + cache_idx; |
| do |
| if (entry->node == bkref_node) |
| return REG_NOERROR; /* We already checked it. */ |
| while (entry++->more); |
| } |
| |
| subexp_num = dfa->nodes[bkref_node].opr.idx; |
| |
| /* For each sub expression */ |
| for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) |
| { |
| reg_errcode_t err; |
| re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; |
| re_sub_match_last_t *sub_last; |
| int sub_last_idx, sl_str, bkref_str_off; |
| |
| if (dfa->nodes[sub_top->node].opr.idx != subexp_num) |
| continue; /* It isn't related. */ |
| |
| sl_str = sub_top->str_idx; |
| bkref_str_off = bkref_str_idx; |
| /* At first, check the last node of sub expressions we already |
| evaluated. */ |
| for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) |
| { |
| int sl_str_diff; |
| sub_last = sub_top->lasts[sub_last_idx]; |
| sl_str_diff = sub_last->str_idx - sl_str; |
| /* The matched string by the sub expression match with the substring |
| at the back reference? */ |
| if (sl_str_diff > 0) |
| { |
| if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) |
| { |
| /* Not enough chars for a successful match. */ |
| if (bkref_str_off + sl_str_diff > mctx->input.len) |
| break; |
| |
| err = clean_state_log_if_needed (mctx, |
| bkref_str_off |
| + sl_str_diff); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| buf = (const char *) re_string_get_buffer (&mctx->input); |
| } |
| if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) |
| /* We don't need to search this sub expression any more. */ |
| break; |
| } |
| bkref_str_off += sl_str_diff; |
| sl_str += sl_str_diff; |
| err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
| bkref_str_idx); |
| |
| /* Reload buf, since the preceding call might have reallocated |
| the buffer. */ |
| buf = (const char *) re_string_get_buffer (&mctx->input); |
| |
| if (err == REG_NOMATCH) |
| continue; |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| |
| if (sub_last_idx < sub_top->nlasts) |
| continue; |
| if (sub_last_idx > 0) |
| ++sl_str; |
| /* Then, search for the other last nodes of the sub expression. */ |
| for (; sl_str <= bkref_str_idx; ++sl_str) |
| { |
| int cls_node, sl_str_off; |
| const re_node_set *nodes; |
| sl_str_off = sl_str - sub_top->str_idx; |
| /* The matched string by the sub expression match with the substring |
| at the back reference? */ |
| if (sl_str_off > 0) |
| { |
| if (BE (bkref_str_off >= mctx->input.valid_len, 0)) |
| { |
| /* If we are at the end of the input, we cannot match. */ |
| if (bkref_str_off >= mctx->input.len) |
| break; |
| |
| err = extend_buffers (mctx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| |
| buf = (const char *) re_string_get_buffer (&mctx->input); |
| } |
| if (buf [bkref_str_off++] != buf[sl_str - 1]) |
| break; /* We don't need to search this sub expression |
| any more. */ |
| } |
| if (mctx->state_log[sl_str] == NULL) |
| continue; |
| /* Does this state have a ')' of the sub expression? */ |
| nodes = &mctx->state_log[sl_str]->nodes; |
| cls_node = find_subexp_node (dfa, nodes, subexp_num, |
| OP_CLOSE_SUBEXP); |
| if (cls_node == -1) |
| continue; /* No. */ |
| if (sub_top->path == NULL) |
| { |
| sub_top->path = calloc (sizeof (state_array_t), |
| sl_str - sub_top->str_idx + 1); |
| if (sub_top->path == NULL) |
| return REG_ESPACE; |
| } |
| /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node |
| in the current context? */ |
| err = check_arrival (mctx, sub_top->path, sub_top->node, |
| sub_top->str_idx, cls_node, sl_str, |
| OP_CLOSE_SUBEXP); |
| if (err == REG_NOMATCH) |
| continue; |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); |
| if (BE (sub_last == NULL, 0)) |
| return REG_ESPACE; |
| err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
| bkref_str_idx); |
| if (err == REG_NOMATCH) |
| continue; |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| /* Helper functions for get_subexp(). */ |
| |
| /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. |
| If it can arrive, register the sub expression expressed with SUB_TOP |
| and SUB_LAST. */ |
| |
| static reg_errcode_t |
| internal_function |
| get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, |
| re_sub_match_last_t *sub_last, int bkref_node, int bkref_str) |
| { |
| reg_errcode_t err; |
| int to_idx; |
| /* Can the subexpression arrive the back reference? */ |
| err = check_arrival (mctx, &sub_last->path, sub_last->node, |
| sub_last->str_idx, bkref_node, bkref_str, |
| OP_OPEN_SUBEXP); |
| if (err != REG_NOERROR) |
| return err; |
| err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, |
| sub_last->str_idx); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; |
| return clean_state_log_if_needed (mctx, to_idx); |
| } |
| |
| /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. |
| Search '(' if FL_OPEN, or search ')' otherwise. |
| TODO: This function isn't efficient... |
| Because there might be more than one nodes whose types are |
| OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
| nodes. |
| E.g. RE: (a){2} */ |
| |
| static int |
| internal_function |
| find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
| int subexp_idx, int type) |
| { |
| int cls_idx; |
| for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) |
| { |
| int cls_node = nodes->elems[cls_idx]; |
| const re_token_t *node = dfa->nodes + cls_node; |
| if (node->type == type |
| && node->opr.idx == subexp_idx) |
| return cls_node; |
| } |
| return -1; |
| } |
| |
| /* Check whether the node TOP_NODE at TOP_STR can arrive to the node |
| LAST_NODE at LAST_STR. We record the path onto PATH since it will be |
| heavily reused. |
| Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ |
| |
| static reg_errcode_t |
| internal_function |
| check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node, |
| int top_str, int last_node, int last_str, int type) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err = REG_NOERROR; |
| int subexp_num, backup_cur_idx, str_idx, null_cnt; |
| re_dfastate_t *cur_state = NULL; |
| re_node_set *cur_nodes, next_nodes; |
| re_dfastate_t **backup_state_log; |
| unsigned int context; |
| |
| subexp_num = dfa->nodes[top_node].opr.idx; |
| /* Extend the buffer if we need. */ |
| if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) |
| { |
| re_dfastate_t **new_array; |
| int old_alloc = path->alloc; |
| path->alloc += last_str + mctx->max_mb_elem_len + 1; |
| new_array = re_realloc (path->array, re_dfastate_t *, path->alloc); |
| if (BE (new_array == NULL, 0)) |
| { |
| path->alloc = old_alloc; |
| return REG_ESPACE; |
| } |
| path->array = new_array; |
| memset (new_array + old_alloc, '\0', |
| sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); |
| } |
| |
| str_idx = path->next_idx ? path->next_idx : top_str; |
| |
| /* Temporary modify MCTX. */ |
| backup_state_log = mctx->state_log; |
| backup_cur_idx = mctx->input.cur_idx; |
| mctx->state_log = path->array; |
| mctx->input.cur_idx = str_idx; |
| |
| /* Setup initial node set. */ |
| context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
| if (str_idx == top_str) |
| { |
| err = re_node_set_init_1 (&next_nodes, top_node); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| } |
| else |
| { |
| cur_state = mctx->state_log[str_idx]; |
| if (cur_state && cur_state->has_backref) |
| { |
| err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| else |
| re_node_set_init_empty (&next_nodes); |
| } |
| if (str_idx == top_str || (cur_state && cur_state->has_backref)) |
| { |
| if (next_nodes.nelem) |
| { |
| err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
| subexp_num, type); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| } |
| cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
| if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| mctx->state_log[str_idx] = cur_state; |
| } |
| |
| for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) |
| { |
| re_node_set_empty (&next_nodes); |
| if (mctx->state_log[str_idx + 1]) |
| { |
| err = re_node_set_merge (&next_nodes, |
| &mctx->state_log[str_idx + 1]->nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| } |
| if (cur_state) |
| { |
| err = check_arrival_add_next_nodes (mctx, str_idx, |
| &cur_state->non_eps_nodes, |
| &next_nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| } |
| ++str_idx; |
| if (next_nodes.nelem) |
| { |
| err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
| subexp_num, type); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| } |
| context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
| cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
| if (BE (cur_state == NULL && err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&next_nodes); |
| return err; |
| } |
| mctx->state_log[str_idx] = cur_state; |
| null_cnt = cur_state == NULL ? null_cnt + 1 : 0; |
| } |
| re_node_set_free (&next_nodes); |
| cur_nodes = (mctx->state_log[last_str] == NULL ? NULL |
| : &mctx->state_log[last_str]->nodes); |
| path->next_idx = str_idx; |
| |
| /* Fix MCTX. */ |
| mctx->state_log = backup_state_log; |
| mctx->input.cur_idx = backup_cur_idx; |
| |
| /* Then check the current node set has the node LAST_NODE. */ |
| if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) |
| return REG_NOERROR; |
| |
| return REG_NOMATCH; |
| } |
| |
| /* Helper functions for check_arrival. */ |
| |
| /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them |
| to NEXT_NODES. |
| TODO: This function is similar to the functions transit_state*(), |
| however this function has many additional works. |
| Can't we unify them? */ |
| |
| static reg_errcode_t |
| internal_function |
| check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx, |
| re_node_set *cur_nodes, re_node_set *next_nodes) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| int result; |
| int cur_idx; |
| #ifdef RE_ENABLE_I18N |
| reg_errcode_t err = REG_NOERROR; |
| #endif |
| re_node_set union_set; |
| re_node_set_init_empty (&union_set); |
| for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) |
| { |
| int naccepted = 0; |
| int cur_node = cur_nodes->elems[cur_idx]; |
| #ifdef DEBUG |
| re_token_type_t type = dfa->nodes[cur_node].type; |
| assert (!IS_EPSILON_NODE (type)); |
| #endif |
| #ifdef RE_ENABLE_I18N |
| /* If the node may accept `multi byte'. */ |
| if (dfa->nodes[cur_node].accept_mb) |
| { |
| naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, |
| str_idx); |
| if (naccepted > 1) |
| { |
| re_dfastate_t *dest_state; |
| int next_node = dfa->nexts[cur_node]; |
| int next_idx = str_idx + naccepted; |
| dest_state = mctx->state_log[next_idx]; |
| re_node_set_empty (&union_set); |
| if (dest_state) |
| { |
| err = re_node_set_merge (&union_set, &dest_state->nodes); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&union_set); |
| return err; |
| } |
| } |
| result = re_node_set_insert (&union_set, next_node); |
| if (BE (result < 0, 0)) |
| { |
| re_node_set_free (&union_set); |
| return REG_ESPACE; |
| } |
| mctx->state_log[next_idx] = re_acquire_state (&err, dfa, |
| &union_set); |
| if (BE (mctx->state_log[next_idx] == NULL |
| && err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&union_set); |
| return err; |
| } |
| } |
| } |
| #endif /* RE_ENABLE_I18N */ |
| if (naccepted |
| || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) |
| { |
| result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); |
| if (BE (result < 0, 0)) |
| { |
| re_node_set_free (&union_set); |
| return REG_ESPACE; |
| } |
| } |
| } |
| re_node_set_free (&union_set); |
| return REG_NOERROR; |
| } |
| |
| /* For all the nodes in CUR_NODES, add the epsilon closures of them to |
| CUR_NODES, however exclude the nodes which are: |
| - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. |
| - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. |
| */ |
| |
| static reg_errcode_t |
| internal_function |
| check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, |
| int ex_subexp, int type) |
| { |
| reg_errcode_t err; |
| int idx, outside_node; |
| re_node_set new_nodes; |
| #ifdef DEBUG |
| assert (cur_nodes->nelem); |
| #endif |
| err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| /* Create a new node set NEW_NODES with the nodes which are epsilon |
| closures of the node in CUR_NODES. */ |
| |
| for (idx = 0; idx < cur_nodes->nelem; ++idx) |
| { |
| int cur_node = cur_nodes->elems[idx]; |
| const re_node_set *eclosure = dfa->eclosures + cur_node; |
| outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); |
| if (outside_node == -1) |
| { |
| /* There are no problematic nodes, just merge them. */ |
| err = re_node_set_merge (&new_nodes, eclosure); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&new_nodes); |
| return err; |
| } |
| } |
| else |
| { |
| /* There are problematic nodes, re-calculate incrementally. */ |
| err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, |
| ex_subexp, type); |
| if (BE (err != REG_NOERROR, 0)) |
| { |
| re_node_set_free (&new_nodes); |
| return err; |
| } |
| } |
| } |
| re_node_set_free (cur_nodes); |
| *cur_nodes = new_nodes; |
| return REG_NOERROR; |
| } |
| |
| /* Helper function for check_arrival_expand_ecl. |
| Check incrementally the epsilon closure of TARGET, and if it isn't |
| problematic append it to DST_NODES. */ |
| |
| static reg_errcode_t |
| internal_function |
| check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, |
| int target, int ex_subexp, int type) |
| { |
| int cur_node; |
| for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) |
| { |
| int err; |
| |
| if (dfa->nodes[cur_node].type == type |
| && dfa->nodes[cur_node].opr.idx == ex_subexp) |
| { |
| if (type == OP_CLOSE_SUBEXP) |
| { |
| err = re_node_set_insert (dst_nodes, cur_node); |
| if (BE (err == -1, 0)) |
| return REG_ESPACE; |
| } |
| break; |
| } |
| err = re_node_set_insert (dst_nodes, cur_node); |
| if (BE (err == -1, 0)) |
| return REG_ESPACE; |
| if (dfa->edests[cur_node].nelem == 0) |
| break; |
| if (dfa->edests[cur_node].nelem == 2) |
| { |
| err = check_arrival_expand_ecl_sub (dfa, dst_nodes, |
| dfa->edests[cur_node].elems[1], |
| ex_subexp, type); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| cur_node = dfa->edests[cur_node].elems[0]; |
| } |
| return REG_NOERROR; |
| } |
| |
| |
| /* For all the back references in the current state, calculate the |
| destination of the back references by the appropriate entry |
| in MCTX->BKREF_ENTS. */ |
| |
| static reg_errcode_t |
| internal_function |
| expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, |
| int cur_str, int subexp_num, int type) |
| { |
| const re_dfa_t *const dfa = mctx->dfa; |
| reg_errcode_t err; |
| int cache_idx_start = search_cur_bkref_entry (mctx, cur_str); |
| struct re_backref_cache_entry *ent; |
| |
| if (cache_idx_start == -1) |
| return REG_NOERROR; |
| |
| restart: |
| ent = mctx->bkref_ents + cache_idx_start; |
| do |
| { |
| int to_idx, next_node; |
| |
| /* Is this entry ENT is appropriate? */ |
| if (!re_node_set_contains (cur_nodes, ent->node)) |
| continue; /* No. */ |
| |
| to_idx = cur_str + ent->subexp_to - ent->subexp_from; |
| /* Calculate the destination of the back reference, and append it |
| to MCTX->STATE_LOG. */ |
| if (to_idx == cur_str) |
| { |
| /* The backreference did epsilon transit, we must re-check all the |
| node in the current state. */ |
| re_node_set new_dests; |
| reg_errcode_t err2, err3; |
| next_node = dfa->edests[ent->node].elems[0]; |
| if (re_node_set_contains (cur_nodes, next_node)) |
| continue; |
| err = re_node_set_init_1 (&new_dests, next_node); |
| err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); |
| err3 = re_node_set_merge (cur_nodes, &new_dests); |
| re_node_set_free (&new_dests); |
| if (BE (err != REG_NOERROR || err2 != REG_NOERROR |
| || err3 != REG_NOERROR, 0)) |
| { |
| err = (err != REG_NOERROR ? err |
| : (err2 != REG_NOERROR ? err2 : err3)); |
| return err; |
| } |
| /* TODO: It is still inefficient... */ |
| goto restart; |
| } |
| else |
| { |
| re_node_set union_set; |
| next_node = dfa->nexts[ent->node]; |
| if (mctx->state_log[to_idx]) |
| { |
| int ret; |
| if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, |
| next_node)) |
| continue; |
| err = re_node_set_init_copy (&union_set, |
| &mctx->state_log[to_idx]->nodes); |
| ret = re_node_set_insert (&union_set, next_node); |
| if (BE (err != REG_NOERROR || ret < 0, 0)) |
| { |
| re_node_set_free (&union_set); |
| err = err != REG_NOERROR ? err : REG_ESPACE; |
| return err; |
| } |
| } |
| else |
| { |
| err = re_node_set_init_1 (&union_set, next_node); |
| if (BE (err != REG_NOERROR, 0)) |
| return err; |
| } |
| mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); |
| re_node_set_free (&union_set); |
| if (BE (mctx->state_log[to_idx] == NULL |
| && err != REG_NOERROR, 0)) |
| return err; |
| } |
| } |
| while (ent++->more); |
| return REG_NOERROR; |
| } |
| |
| /* Build transition table for the state. |
| Return 1 if succeeded, otherwise return NULL. */ |
| |
| static int |
| internal_function |
| build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) |
| { |
| reg_errcode_t err; |
| int i, j, ch, need_word_trtable = 0; |
| bitset_word_t elem, mask; |
| bool dests_node_malloced = false; |
| bool dest_states_malloced = false; |
| int ndests; /* Number of the destination states from `state'. */ |
| re_dfastate_t **trtable; |
| re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; |
| re_node_set follows, *dests_node; |
| bitset_t *dests_ch; |
| bitset_t acceptable; |
| |
| struct dests_alloc |
| { |
| re_node_set dests_node[SBC_MAX]; |
| bitset_t dests_ch[SBC_MAX]; |
| } *dests_alloc; |
| |
| /* We build DFA states which corresponds to the destination nodes |
| from `state'. `dests_node[i]' represents the nodes which i-th |
| destination state contains, and `dests_ch[i]' represents the |
| characters which i-th destination state accepts. */ |
| #ifdef HAVE_ALLOCA |
| if (__libc_use_alloca (sizeof (struct dests_alloc))) |
| dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); |
| else |
| #endif |
| { |
| dests_alloc = re_malloc (struct dests_alloc, 1); |
| if (BE (dests_alloc == NULL, 0)) |
| return 0; |
| dests_node_malloced = true; |
| } |
| dests_node = dests_alloc->dests_node; |
| dests_ch = dests_alloc->dests_ch; |
| |
| /* Initialize transiton table. */ |
| state->word_trtable = state->trtable = NULL; |
| |
| /* At first, group all nodes belonging to `state' into several |
| destinations. */ |
| ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); |
| if (BE (ndests <= 0, 0)) |
| { |
| if (dests_node_malloced) |
| free (dests_alloc); |
| /* Return 0 in case of an error, 1 otherwise. */ |
| if (ndests == 0) |
| { |
| state->trtable = (re_dfastate_t **) |
| calloc (sizeof (re_dfastate_t *), SBC_MAX); |
| return 1; |
| } |
| return 0; |
| } |
| |
| err = re_node_set_alloc (&follows, ndests + 1); |
| if (BE (err != REG_NOERROR, 0)) |
| goto out_free; |
| |
| /* Avoid arithmetic overflow in size calculation. */ |
| if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) |
| / (3 * sizeof (re_dfastate_t *))) |
| < ndests), |
| 0)) |
| goto out_free; |
| |
| #ifdef HAVE_ALLOCA |
| if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX |
| + ndests * 3 * sizeof (re_dfastate_t *))) |
| dest_states = (re_dfastate_t **) |
| alloca (ndests * 3 * sizeof (re_dfastate_t *)); |
| else |
| #endif |
| { |
| dest_states = (re_dfastate_t **) |
| malloc (ndests * 3 * sizeof (re_dfastate_t *)); |
| if (BE (dest_states == NULL, 0)) |
| { |
| out_free: |
| if (dest_states_malloced) |
| free (dest_states); |
| re_node_set_free (&follows); |
| for (i = 0; i < ndests; ++i) |
| re_node_set_free (dests_node + i); |
| if (dests_node_malloced) |
| free (dests_alloc); |
| return 0; |
| } |
| dest_states_malloced = true; |
| } |
| dest_states_word = dest_states + ndests; |
| dest_states_nl = dest_states_word + ndests; |
| bitset_empty (acceptable); |
| |
| /* Then build the states for all destinations. */ |
| for (i = 0; i < ndests; ++i) |
| { |
| int next_node; |
| re_node_set_empty (&follows); |
| /* Merge the follows of this destination states. */ |
| for (j = 0; j < dests_node[i].nelem; ++j) |
| { |
| next_node = dfa->nexts[dests_node[i].elems[j]]; |
| if (next_node != -1) |
| { |
| err = re_node_set_merge (&follows, dfa->eclosures + next_node); |
| if (BE (err != REG_NOERROR, 0)) |
| goto out_free; |
| } |
| } |
| dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); |
| if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) |
| goto out_free; |
| /* If the new state has context constraint, |
| build appropriate states for these contexts. */ |
| if (dest_states[i]->has_constraint) |
| { |
| dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, |
| CONTEXT_WORD); |
| if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) |
| goto out_free; |
| |
| if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) |
| need_word_trtable = 1; |
| |
| dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, |
| CONTEXT_NEWLINE); |
| if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) |
| goto out_free; |
| } |
| else |
| { |
| dest_states_word[i] = dest_states[i]; |
| dest_states_nl[i] = dest_states[i]; |
| } |
| bitset_merge (acceptable, dests_ch[i]); |
| } |
| |
| if (!BE (need_word_trtable, 0)) |
| { |
| /* We don't care about whether the following character is a word |
| character, or we are in a single-byte character set so we can |
| discern by looking at the character code: allocate a |
| 256-entry transition table. */ |
| trtable = state->trtable = |
| (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); |
| if (BE (trtable == NULL, 0)) |
| goto out_free; |
| |
| /* For all characters ch...: */ |
| for (i = 0; i < BITSET_WORDS; ++i) |
| for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
| elem; |
| mask <<= 1, elem >>= 1, ++ch) |
| if (BE (elem & 1, 0)) |
| { |
| /* There must be exactly one destination which accepts |
| character ch. See group_nodes_into_DFAstates. */ |
| for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
| ; |
| |
| /* j-th destination accepts the word character ch. */ |
| if (dfa->word_char[i] & mask) |
| trtable[ch] = dest_states_word[j]; |
| else |
| trtable[ch] = dest_states[j]; |
| } |
| } |
| else |
| { |
| /* We care about whether the following character is a word |
| character, and we are in a multi-byte character set: discern |
| by looking at the character code: build two 256-entry |
| transition tables, one starting at trtable[0] and one |
| starting at trtable[SBC_MAX]. */ |
| trtable = state->word_trtable = |
| (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); |
| if (BE (trtable == NULL, 0)) |
| goto out_free; |
| |
| /* For all characters ch...: */ |
| for (i = 0; i < BITSET_WORDS; ++i) |
| for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
| elem; |
| mask <<= 1, elem >>= 1, ++ch) |
| if (BE (elem & 1, 0)) |
| { |
| /* There must be exactly one destination which accepts |
| character ch. See group_nodes_into_DFAstates. */ |
| for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
| ; |
| |
| /* j-th destination accepts the word character ch. */ |
| trtable[ch] = dest_states[j]; |
| trtable[ch + SBC_MAX] = dest_states_word[j]; |
| } |
| } |
| |
| /* new line */ |
| if (bitset_contain (acceptable, NEWLINE_CHAR)) |
| { |
| /* The current state accepts newline character. */ |
| for (j = 0; j < ndests; ++j) |
| if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) |
| { |
| /* k-th destination accepts newline character. */ |
| trtable[NEWLINE_CHAR] = dest_states_nl[j]; |
| if (need_word_trtable) |
| trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; |
| /* There must be only one destination which accepts |
| newline. See group_nodes_into_DFAstates. */ |
| break; |
| } |
| } |
| |
| if (dest_states_malloced) |
| free (dest_states); |
| |
| re_node_set_free (&follows); |
| for (i = 0; i < ndests; ++i) |
| re_node_set_free (dests_node + i); |
| |
| if (dests_node_malloced) |
| free (dests_alloc); |
| |
| return 1; |
| } |
| |
| /* Group all nodes belonging to STATE into several destinations. |
| Then for all destinations, set the nodes belonging to the destination |
| to DESTS_NODE[i] and set the characters accepted by the destination |
| to DEST_CH[i]. This function return the number of destinations. */ |
| |
| static int |
| internal_function |
| group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, |
| re_node_set *dests_node, bitset_t *dests_ch) |
| { |
| reg_errcode_t err; |
| int result; |
| int i, j, k; |
| int ndests; /* Number of the destinations from `state'. */ |
| bitset_t accepts; /* Characters a node can accept. */ |
| const re_node_set *cur_nodes = &state->nodes; |
| bitset_empty (accepts); |
| ndests = 0; |
| |
| /* For all the nodes belonging to `state', */ |
| for (i = 0; i < cur_nodes->nelem; ++i) |
| { |
| re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; |
| re_token_type_t type = node->type; |
| unsigned int constraint = node->constraint; |
| |
| /* Enumerate all single byte character this node can accept. */ |
| if (type == CHARACTER) |
| bitset_set (accepts, node->opr.c); |
| else if (type == SIMPLE_BRACKET) |
| { |
| bitset_merge (accepts, node->opr.sbcset); |
| } |
| else if (type == OP_PERIOD) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| bitset_merge (accepts, dfa->sb_char); |
| else |
| #endif |
| bitset_set_all (accepts); |
| if (!(dfa->syntax & RE_DOT_NEWLINE)) |
| bitset_clear (accepts, '\n'); |
| if (dfa->syntax & RE_DOT_NOT_NULL) |
| bitset_clear (accepts, '\0'); |
| } |
| #ifdef RE_ENABLE_I18N |
| else if (type == OP_UTF8_PERIOD) |
| { |
| memset (accepts, '\xff', sizeof (bitset_t) / 2); |
| if (!(dfa->syntax & RE_DOT_NEWLINE)) |
| bitset_clear (accepts, '\n'); |
| if (dfa->syntax & RE_DOT_NOT_NULL) |
| bitset_clear (accepts, '\0'); |
| } |
| #endif |
| else |
| continue; |
| |
| /* Check the `accepts' and sift the characters which are not |
| match it the context. */ |
| if (constraint) |
| { |
| if (constraint & NEXT_NEWLINE_CONSTRAINT) |
| { |
| bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); |
| bitset_empty (accepts); |
| if (accepts_newline) |
| bitset_set (accepts, NEWLINE_CHAR); |
| else |
| continue; |
| } |
| if (constraint & NEXT_ENDBUF_CONSTRAINT) |
| { |
| bitset_empty (accepts); |
| continue; |
| } |
| |
| if (constraint & NEXT_WORD_CONSTRAINT) |
| { |
| bitset_word_t any_set = 0; |
| if (type == CHARACTER && !node->word_char) |
| { |
| bitset_empty (accepts); |
| continue; |
| } |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| for (j = 0; j < BITSET_WORDS; ++j) |
| any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); |
| else |
| #endif |
| for (j = 0; j < BITSET_WORDS; ++j) |
| any_set |= (accepts[j] &= dfa->word_char[j]); |
| if (!any_set) |
| continue; |
| } |
| if (constraint & NEXT_NOTWORD_CONSTRAINT) |
| { |
| bitset_word_t any_set = 0; |
| if (type == CHARACTER && node->word_char) |
| { |
| bitset_empty (accepts); |
| continue; |
| } |
| #ifdef RE_ENABLE_I18N |
| if (dfa->mb_cur_max > 1) |
| for (j = 0; j < BITSET_WORDS; ++j) |
| any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); |
| else |
| #endif |
| for (j = 0; j < BITSET_WORDS; ++j) |
| any_set |= (accepts[j] &= ~dfa->word_char[j]); |
| if (!any_set) |
| continue; |
| } |
| } |
| |
| /* Then divide `accepts' into DFA states, or create a new |
| state. Above, we make sure that accepts is not empty. */ |
| for (j = 0; j < ndests; ++j) |
| { |
| bitset_t intersec; /* Intersection sets, see below. */ |
| bitset_t remains; |
| /* Flags, see below. */ |
| bitset_word_t has_intersec, not_subset, not_consumed; |
| |
| /* Optimization, skip if this state doesn't accept the character. */ |
| if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) |
| continue; |
| |
| /* Enumerate the intersection set of this state and `accepts'. */ |
| has_intersec = 0; |
| for (k = 0; k < BITSET_WORDS; ++k) |
| has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; |
| /* And skip if the intersection set is empty. */ |
| if (!has_intersec) |
| continue; |
| |
| /* Then check if this state is a subset of `accepts'. */ |
| not_subset = not_consumed = 0; |
| for (k = 0; k < BITSET_WORDS; ++k) |
| { |
| not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; |
| not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; |
| } |
| |
| /* If this state isn't a subset of `accepts', create a |
| new group state, which has the `remains'. */ |
| if (not_subset) |
| { |
| bitset_copy (dests_ch[ndests], remains); |
| bitset_copy (dests_ch[j], intersec); |
| err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); |
| if (BE (err != REG_NOERROR, 0)) |
| goto error_return; |
| ++ndests; |
| } |
| |
| /* Put the position in the current group. */ |
| result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); |
| if (BE (result < 0, 0)) |
| goto error_return; |
| |
| /* If all characters are consumed, go to next node. */ |
| if (!not_consumed) |
| break; |
| } |
| /* Some characters remain, create a new group. */ |
| if (j == ndests) |
| { |
| bitset_copy (dests_ch[ndests], accepts); |
| err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); |
| if (BE (err != REG_NOERROR, 0)) |
| goto error_return; |
| ++ndests; |
| bitset_empty (accepts); |
| } |
| } |
| return ndests; |
| error_return: |
| for (j = 0; j < ndests; ++j) |
| re_node_set_free (dests_node + j); |
| return -1; |
| } |
| |
| #ifdef RE_ENABLE_I18N |
| /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. |
| Return the number of the bytes the node accepts. |
| STR_IDX is the current index of the input string. |
| |
| This function handles the nodes which can accept one character, or |
| one collating element like '.', '[a-z]', opposite to the other nodes |
| can only accept one byte. */ |
| |
| static int |
| internal_function |
| check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, |
| const re_string_t *input, int str_idx) |
| { |
| const re_token_t *node = dfa->nodes + node_idx; |
| int char_len, elem_len; |
| int i; |
| wint_t wc; |
| |
| if (BE (node->type == OP_UTF8_PERIOD, 0)) |
| { |
| unsigned char c = re_string_byte_at (input, str_idx), d; |
| if (BE (c < 0xc2, 1)) |
| return 0; |
| |
| if (str_idx + 2 > input->len) |
| return 0; |
| |
| d = re_string_byte_at (input, str_idx + 1); |
| if (c < 0xe0) |
| return (d < 0x80 || d > 0xbf) ? 0 : 2; |
| else if (c < 0xf0) |
| { |
| char_len = 3; |
| if (c == 0xe0 && d < 0xa0) |
| return 0; |
| } |
| else if (c < 0xf8) |
| { |
| char_len = 4; |
| if (c == 0xf0 && d < 0x90) |
| return 0; |
| } |
| else if (c < 0xfc) |
| { |
| char_len = 5; |
| if (c == 0xf8 && d < 0x88) |
| return 0; |
| } |
| else if (c < 0xfe) |
| { |
| char_len = 6; |
| if (c == 0xfc && d < 0x84) |
| return 0; |
| } |
| else |
| return 0; |
| |
| if (str_idx + char_len > input->len) |
| return 0; |
| |
| for (i = 1; i < char_len; ++i) |
| { |
| d = re_string_byte_at (input, str_idx + i); |
| if (d < 0x80 || d > 0xbf) |
| return 0; |
| } |
| return char_len; |
| } |
| |
| char_len = re_string_char_size_at (input, str_idx); |
| if (node->type == OP_PERIOD) |
| { |
| if (char_len <= 1) |
| return 0; |
| /* FIXME: I don't think this if is needed, as both '\n' |
| and '\0' are char_len == 1. */ |
| /* '.' accepts any one character except the following two cases. */ |
| if ((!(dfa->syntax & RE_DOT_NEWLINE) && |
| re_string_byte_at (input, str_idx) == '\n') || |
| ((dfa->syntax & RE_DOT_NOT_NULL) && |
| re_string_byte_at (input, str_idx) == '\0')) |
| return 0; |
| return char_len; |
| } |
| |
| elem_len = re_string_elem_size_at (input, str_idx); |
| wc = __btowc(*(input->mbs+str_idx)); |
| if (((elem_len <= 1 && char_len <= 1) || char_len == 0) && (wc != WEOF && wc < SBC_MAX)) |
| return 0; |
| |
| if (node->type == COMPLEX_BRACKET) |
| { |
| const re_charset_t *cset = node->opr.mbcset; |
| # ifdef _LIBC |
| const unsigned char *pin |
| = ((const unsigned char *) re_string_get_buffer (input) + str_idx); |
| int j; |
| uint32_t nrules; |
| # endif /* _LIBC */ |
| int match_len = 0; |
| wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) |
| ? re_string_wchar_at (input, str_idx) : 0); |
| |
| /* match with multibyte character? */ |
| for (i = 0; i < cset->nmbchars; ++i) |
| if (wc == cset->mbchars[i]) |
| { |
| match_len = char_len; |
| goto check_node_accept_bytes_match; |
| } |
| /* match with character_class? */ |
| for (i = 0; i < cset->nchar_classes; ++i) |
| { |
| wctype_t wt = cset->char_classes[i]; |
| if (__iswctype (wc, wt)) |
| { |
| match_len = char_len; |
| goto check_node_accept_bytes_match; |
| } |
| } |
| |
| # ifdef _LIBC |
| nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| if (nrules != 0) |
| { |
| unsigned int in_collseq = 0; |
| const int32_t *table, *indirect; |
| const unsigned char *weights, *extra; |
| const char *collseqwc; |
| /* This #include defines a local function! */ |
| # include <locale/weight.h> |
| |
| /* match with collating_symbol? */ |
| if (cset->ncoll_syms) |
| extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| for (i = 0; i < cset->ncoll_syms; ++i) |
| { |
| const unsigned char *coll_sym = extra + cset->coll_syms[i]; |
| /* Compare the length of input collating element and |
| the length of current collating element. */ |
| if (*coll_sym != elem_len) |
| continue; |
| /* Compare each bytes. */ |
| for (j = 0; j < *coll_sym; j++) |
| if (pin[j] != coll_sym[1 + j]) |
| break; |
| if (j == *coll_sym) |
| { |
| /* Match if every bytes is equal. */ |
| match_len = j; |
| goto check_node_accept_bytes_match; |
| } |
| } |
| |
| if (cset->nranges) |
| { |
| if (elem_len <= char_len) |
| { |
| collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
| in_collseq = __collseq_table_lookup (collseqwc, wc); |
| } |
| else |
| in_collseq = find_collation_sequence_value (pin, elem_len); |
| } |
| /* match with range expression? */ |
| for (i = 0; i < cset->nranges; ++i) |
| if (cset->range_starts[i] <= in_collseq |
| && in_collseq <= cset->range_ends[i]) |
| { |
| match_len = elem_len; |
| goto check_node_accept_bytes_match; |
| } |
| |
| /* match with equivalence_class? */ |
| if (cset->nequiv_classes) |
| { |
| const unsigned char *cp = pin; |
| table = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
| weights = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
| extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
| indirect = (const int32_t *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
| int32_t idx = findidx (&cp); |
| if (idx > 0) |
| for (i = 0; i < cset->nequiv_classes; ++i) |
| { |
| int32_t equiv_class_idx = cset->equiv_classes[i]; |
| size_t weight_len = weights[idx & 0xffffff]; |
| if (weight_len == weights[equiv_class_idx & 0xffffff] |
| && (idx >> 24) == (equiv_class_idx >> 24)) |
| { |
| int cnt = 0; |
| |
| idx &= 0xffffff; |
| equiv_class_idx &= 0xffffff; |
| |
| while (cnt <= weight_len |
| && (weights[equiv_class_idx + 1 + cnt] |
| == weights[idx + 1 + cnt])) |
| ++cnt; |
| if (cnt > weight_len) |
| { |
| match_len = elem_len; |
| goto check_node_accept_bytes_match; |
| } |
| } |
| } |
| } |
| } |
| else |
| # endif /* _LIBC */ |
| { |
| /* match with range expression? */ |
| #if __GNUC__ >= 2 |
| wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; |
| #else |
| wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; |
| cmp_buf[2] = wc; |
| #endif |
| for (i = 0; i < cset->nranges; ++i) |
| { |
| cmp_buf[0] = cset->range_starts[i]; |
| cmp_buf[4] = cset->range_ends[i]; |
| if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 |
| && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) |
| { |
| match_len = char_len; |
| goto check_node_accept_bytes_match; |
| } |
| } |
| } |
| check_node_accept_bytes_match: |
| if (!cset->non_match) |
| return match_len; |
| else |
| { |
| if (match_len > 0) |
| return 0; |
| else |
| return (elem_len > char_len) ? elem_len : char_len; |
| } |
| } |
| return 0; |
| } |
| |
| # ifdef _LIBC |
| static unsigned int |
| internal_function |
| find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) |
| { |
| uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
| if (nrules == 0) |
| { |
| if (mbs_len == 1) |
| { |
| /* No valid character. Match it as a single byte character. */ |
| const unsigned char *collseq = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
| return collseq[mbs[0]]; |
| } |
| return UINT_MAX; |
| } |
| else |
| { |
| int32_t idx; |
| const unsigned char *extra = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
| int32_t extrasize = (const unsigned char *) |
| _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; |
| |
| for (idx = 0; idx < extrasize;) |
| { |
| int mbs_cnt, found = 0; |
| int32_t elem_mbs_len; |
| /* Skip the name of collating element name. */ |
| idx = idx + extra[idx] + 1; |
| elem_mbs_len = extra[idx++]; |
| if (mbs_len == elem_mbs_len) |
| { |
| for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) |
| if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) |
| break; |
| if (mbs_cnt == elem_mbs_len) |
| /* Found the entry. */ |
| found = 1; |
| } |
| /* Skip the byte sequence of the collating element. */ |
| idx += elem_mbs_len; |
| /* Adjust for the alignment. */ |
| idx = (idx + 3) & ~3; |
| /* Skip the collation sequence value. */ |
| idx += sizeof (uint32_t); |
| /* Skip the wide char sequence of the collating element. */ |
| idx = idx + sizeof (uint32_t) * (extra[idx] + 1); |
| /* If we found the entry, return the sequence value. */ |
| if (found) |
| return *(uint32_t *) (extra + idx); |
| /* Skip the collation sequence value. */ |
| idx += sizeof (uint32_t); |
| } |
| return UINT_MAX; |
| } |
| } |
| # endif /* _LIBC */ |
| #endif /* RE_ENABLE_I18N */ |
| |
| /* Check whether the node accepts the byte which is IDX-th |
| byte of the INPUT. */ |
| |
| static int |
| internal_function |
| check_node_accept (const re_match_context_t *mctx, const re_token_t *node, |
| int idx) |
| { |
| unsigned char ch; |
| ch = re_string_byte_at (&mctx->input, idx); |
| switch (node->type) |
| { |
| case CHARACTER: |
| if (node->opr.c != ch) |
| return 0; |
| break; |
| |
| case SIMPLE_BRACKET: |
| if (!bitset_contain (node->opr.sbcset, ch)) |
| return 0; |
| break; |
| |
| #ifdef RE_ENABLE_I18N |
| case OP_UTF8_PERIOD: |
| if (ch >= 0x80) |
| return 0; |
| /* FALLTHROUGH */ |
| #endif |
| case OP_PERIOD: |
| if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) |
| || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) |
| return 0; |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| if (node->constraint) |
| { |
| /* The node has constraints. Check whether the current context |
| satisfies the constraints. */ |
| unsigned int context = re_string_context_at (&mctx->input, idx, |
| mctx->eflags); |
| if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Extend the buffers, if the buffers have run out. */ |
| |
| static reg_errcode_t |
| internal_function |
| extend_buffers (re_match_context_t *mctx) |
| { |
| reg_errcode_t ret; |
| re_string_t *pstr = &mctx->input; |
| |
| /* Avoid overflow. */ |
| if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0)) |
| return REG_ESPACE; |
| |
| /* Double the lengthes of the buffers. */ |
| ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| |
| if (mctx->state_log != NULL) |
| { |
| /* And double the length of state_log. */ |
| /* XXX We have no indication of the size of this buffer. If this |
| allocation fail we have no indication that the state_log array |
| does not have the right size. */ |
| re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, |
| pstr->bufs_len + 1); |
| if (BE (new_array == NULL, 0)) |
| return REG_ESPACE; |
| mctx->state_log = new_array; |
| } |
| |
| /* Then reconstruct the buffers. */ |
| if (pstr->icase) |
| { |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| { |
| ret = build_wcs_upper_buffer (pstr); |
| if (BE (ret != REG_NOERROR, 0)) |
| return ret; |
| } |
| else |
| #endif /* RE_ENABLE_I18N */ |
| build_upper_buffer (pstr); |
| } |
| else |
| { |
| #ifdef RE_ENABLE_I18N |
| if (pstr->mb_cur_max > 1) |
| build_wcs_buffer (pstr); |
| else |
| #endif /* RE_ENABLE_I18N */ |
| { |
| if (pstr->trans != NULL) |
| re_string_translate_buffer (pstr); |
| } |
| } |
| return REG_NOERROR; |
| } |
| |
| |
| /* Functions for matching context. */ |
| |
| /* Initialize MCTX. */ |
| |
| static reg_errcode_t |
| internal_function |
| match_ctx_init (re_match_context_t *mctx, int eflags, int n) |
| { |
| mctx->eflags = eflags; |
| mctx->match_last = -1; |
| if (n > 0) |
| { |
| mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); |
| mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); |
| if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) |
| return REG_ESPACE; |
| } |
| /* Already zero-ed by the caller. |
| else |
| mctx->bkref_ents = NULL; |
| mctx->nbkref_ents = 0; |
| mctx->nsub_tops = 0; */ |
| mctx->abkref_ents = n; |
| mctx->max_mb_elem_len = 1; |
| mctx->asub_tops = n; |
| return REG_NOERROR; |
| } |
| |
| /* Clean the entries which depend on the current input in MCTX. |
| This function must be invoked when the matcher changes the start index |
| of the input, or changes the input string. */ |
| |
| static void |
| internal_function |
| match_ctx_clean (re_match_context_t *mctx) |
| { |
| int st_idx; |
| for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) |
| { |
| int sl_idx; |
| re_sub_match_top_t *top = mctx->sub_tops[st_idx]; |
| for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) |
| { |
| re_sub_match_last_t *last = top->lasts[sl_idx]; |
| re_free (last->path.array); |
| re_free (last); |
| } |
| re_free (top->lasts); |
| if (top->path) |
| { |
| re_free (top->path->array); |
| re_free (top->path); |
| } |
| free (top); |
| } |
| |
| mctx->nsub_tops = 0; |
| mctx->nbkref_ents = 0; |
| } |
| |
| /* Free all the memory associated with MCTX. */ |
| |
| static void |
| internal_function |
| match_ctx_free (re_match_context_t *mctx) |
| { |
| /* First, free all the memory associated with MCTX->SUB_TOPS. */ |
| match_ctx_clean (mctx); |
| re_free (mctx->sub_tops); |
| re_free (mctx->bkref_ents); |
| } |
| |
| /* Add a new backreference entry to MCTX. |
| Note that we assume that caller never call this function with duplicate |
| entry, and call with STR_IDX which isn't smaller than any existing entry. |
| */ |
| |
| static reg_errcode_t |
| internal_function |
| match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from, |
| int to) |
| { |
| if (mctx->nbkref_ents >= mctx->abkref_ents) |
| { |
| struct re_backref_cache_entry* new_entry; |
| new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, |
| mctx->abkref_ents * 2); |
| if (BE (new_entry == NULL, 0)) |
| { |
| re_free (mctx->bkref_ents); |
| return REG_ESPACE; |
| } |
| mctx->bkref_ents = new_entry; |
| memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', |
| sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); |
| mctx->abkref_ents *= 2; |
| } |
| if (mctx->nbkref_ents > 0 |
| && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) |
| mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; |
| |
| mctx->bkref_ents[mctx->nbkref_ents].node = node; |
| mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; |
| mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; |
| mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; |
| |
| /* This is a cache that saves negative results of check_dst_limits_calc_pos. |
| If bit N is clear, means that this entry won't epsilon-transition to |
| an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If |
| it is set, check_dst_limits_calc_pos_1 will recurse and try to find one |
| such node. |
| |
| A backreference does not epsilon-transition unless it is empty, so set |
| to all zeros if FROM != TO. */ |
| mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map |
| = (from == to ? ~0 : 0); |
| |
| mctx->bkref_ents[mctx->nbkref_ents++].more = 0; |
| if (mctx->max_mb_elem_len < to - from) |
| mctx->max_mb_elem_len = to - from; |
| return REG_NOERROR; |
| } |
| |
| /* Search for the first entry which has the same str_idx, or -1 if none is |
| found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ |
| |
| static int |
| internal_function |
| search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) |
| { |
| int left, right, mid, last; |
| last = right = mctx->nbkref_ents; |
| for (left = 0; left < right;) |
| { |
| mid = (left + right) / 2; |
| if (mctx->bkref_ents[mid].str_idx < str_idx) |
| left = mid + 1; |
| else |
| right = mid; |
| } |
| if (left < last && mctx->bkref_ents[left].str_idx == str_idx) |
| return left; |
| else |
| return -1; |
| } |
| |
| /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches |
| at STR_IDX. */ |
| |
| static reg_errcode_t |
| internal_function |
| match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx) |
| { |
| #ifdef DEBUG |
| assert (mctx->sub_tops != NULL); |
| assert (mctx->asub_tops > 0); |
| #endif |
| if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) |
| { |
| int new_asub_tops = mctx->asub_tops * 2; |
| re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, |
| re_sub_match_top_t *, |
| new_asub_tops); |
| if (BE (new_array == NULL, 0)) |
| return REG_ESPACE; |
| mctx->sub_tops = new_array; |
| mctx->asub_tops = new_asub_tops; |
| } |
| mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); |
| if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) |
| return REG_ESPACE; |
| mctx->sub_tops[mctx->nsub_tops]->node = node; |
| mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; |
| return REG_NOERROR; |
| } |
| |
| /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches |
| at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ |
| |
| static re_sub_match_last_t * |
| internal_function |
| match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx) |
| { |
| re_sub_match_last_t *new_entry; |
| if (BE (subtop->nlasts == subtop->alasts, 0)) |
| { |
| int new_alasts = 2 * subtop->alasts + 1; |
| re_sub_match_last_t **new_array = re_realloc (subtop->lasts, |
| re_sub_match_last_t *, |
| new_alasts); |
| if (BE (new_array == NULL, 0)) |
| return NULL; |
| subtop->lasts = new_array; |
| subtop->alasts = new_alasts; |
| } |
| new_entry = calloc (1, sizeof (re_sub_match_last_t)); |
| if (BE (new_entry != NULL, 1)) |
| { |
| subtop->lasts[subtop->nlasts] = new_entry; |
| new_entry->node = node; |
| new_entry->str_idx = str_idx; |
| ++subtop->nlasts; |
| } |
| return new_entry; |
| } |
| |
| static void |
| internal_function |
| sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
| re_dfastate_t **limited_sts, int last_node, int last_str_idx) |
| { |
| sctx->sifted_states = sifted_sts; |
| sctx->limited_states = limited_sts; |
| sctx->last_node = last_node; |
| sctx->last_str_idx = last_str_idx; |
| re_node_set_init_empty (&sctx->limits); |
| } |